Sausalito Developer’s Guide
Beta Release 9, 2/14/01

Cobalt Networks, Inc. All Rights Reserved

ii Contents

Copyright © 2001 by Cobalt Networks, Inc.

All rights reserved.
Printed in the United States of America.

C OB Lr
[=

E T W O R K

"

555 Ellis Street

Mountain View, CA 94043
650 623-2500
www.cobalt.com

February 14, 2001 1:48 pm
Proprietary and Confidential

Cobalt Networks and Cobalt Qube are trademarks of Cobalt Networks, Inc. All other company, brand and product
names may be registered trademarks or trademarks of their respective companies and are hereby recognized.

This publication and the information herein is furnished “AS 1S”, subject to change without notice, and should not be
construed as a commitment by Cobalt Networks, Inc. Furthermore, Cobalt Networks, Inc., assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fithess for particular purposes and non-
infringement of third-party rights.

The majority of the software used within the Cobalt Qube 3 can be freely distributed under the terms of the BSD
copyright and the GNU Public License. However, some applications remain the property of their owners and require
their permission to redistribute. For a complete listing of the software used within the Cobalt Qube 3, and the terms
under which it can be distributed, refer to the Cobalt Web site at http://www.cobalt.com.

The Cobalt Qube 3 includes software developed by the Apache Group for use in the Apache HTTP server project
(http://lwww.apache.org/). The Cobalt Qube 3 also includes Majordomo, a package for managing Internet mailing lists.
The latest version of Majordomo can be obtained from ftp://ftp.greatcircle.com/pub/majordomo/ .

Sendmail is a trademark of Sendmail, Inc.

Contents

Acknowledgements. Xiii
What'sNew inthisDocument., Xiii
Chapter 1 Introducing The Sausalito Architecture
INtroduction 11
AudienCe 1-2
About thiSBOOK. 1-3
Related DOCUMENtSo 1-3
Document Roadmap.o 14
ConventionsUsed inthisGuide 14
Typographical Conventions.t 14
Programmatic Conventionst 1-5
TErmMiNOIOgY . ..ot 1-5
Chapter 2 About The Sausalito Architecture
TheApplianceConceptot e e e 2-1
Abstraction of the SystemintoObjects. 2-2
Storingthe Objects. oo 2-3
Manipulatingthe Objects. i 2-4
ExtendingtheObjects i 2-5
WatchingforChanges.t 26
ActuatingtheChanges. i 2-7
Modularity —Doing Your OwnThing. 2-7
What SausalitoisNOt.t 2-7
Chapter 3 User Interface
How the Menu SystemWorks.o i 31
AddingaNew Menultem, 32
Menu Attributes. 32
How theLibrariesWork 33
A Further Example. ... 34
TheUser InterfaceStyle 3-6
How StylesWork.o 3-6
Changing theUser Interface Style. oL, 37
Making Other StyleChanges. 3-8
Chapter 4 Internationalizing Sausalito
I18N: AWOrld ToUr ..o 4-1
TerMINOIOgY. . . . oot 4-1

iv Contents
How Internationalization Works, 4-2
Using Domains, Tags, andLocales.t 4-3

DOMaINS. . .. 4-3
Ta0S . o 4-3
LOCale. .o e 4-3
How StringsAre AddedtotheSystem, 4-4
Using Interpolationt e 4-4
Interpolation RUIES. 4-5
Theil8ninterface 4-6
The118n C-languageinterface. it 4-6
Theil8nPHPInterface......... ... i 4-10
Object Methods 4-10
Internationalization Example. i 4-14

Chapter 5 Introducing The Cobalt Configuration Engine

The Cobalt Configuration Engine(CCE)cooou.... 5-2
BasiC CoNCEPES. . .. v vttt 5-2
How DataFlows Through CCE.o, 5-3
The CCED@EMON\ttt et e e 5-4
Command-LineParameters. 5-5
The Cobalt System Configuration Protocol (CSCP) 5-5
The Cobalt Object Database (CODB) ..., 5-6
SChEMES. . . . 5-6
How to Read XML Syntax Descriptions. 5-6
Whitespace. 5-7
SYmbOIS . .. 5-7
Elementsand Content. 5-7
AtHbULES 5-8
COMMENES. . .. 5-8
Escape SequenCes.ot 5-8
Sample XML . ..o 5-8
Schema Syntax. 59
Syntax: SCHEMA 5-9
Syntax: CLASS ... o 5-10
Syntax: PROPERTY ... 5-11
Syntax: TYPEDEF. i 5-12
Sample SchemaDefinitionFile. 5-12
Handler Registration e 5-14
Events. 5-14

Contents

Chapter 6

BgES. . o e 5-15
FileNamingo 5-15
Sample Handler RegistrationFile, 5-15
Libraries. . .o 5-16
G 5-16
Perl . 5-16
SYNOPSIS .« vttt 5-16
Developer Programming Interface. 5-17
Creating ANew Objectt 5-17
ConnectingtotheDaemon., 5-17
CSCPLIbrarieso e 5-17
AUTH. 5-17
CrEatE . . o 5-18
DESIIOY . . o 5-18

S 5-18
T 5-19
Names. 5-20
Find. ..o 5-20
BYe. . 5-21
Baddata. 5-21
INfO. o 5-21
Warn. .. 5-21
Command-line (CceClient), 5-21
About CeeClient. 5-22
Public Methods for CceClient (PHP).ot 5-22
EXample .. 5-24
Makeaschema.t 5-24
Manipulate fromhello_ world 5-24
CCE CONSIIUCIONS . . . o ettt e e e e e e 5-24
Manipulate fromhello_ world 5-25

Making Sausalito-Aware Applications

Making Sausalito-Aware Applications 6-1
About the ApplicationModule 6-2
Naming Your ApplicationModule 6-3
BuildingaNew ServiceModule L. 6-3

Making your ApplicationintoaPackage 6-4

Introducing Slush Barn, A “Real-World” Application 6-7

How to Install your Package FileontheQube3.................... 6-9

Installation Process. oo 6-10

Y Contents
Choicesfor the Installation Process. 6-11
Package Structure 6-11
Package Dependency Model 6-15
Information for Installing Stand-alone Packages. 6-16
SoftwareUpdate Server 6-18
DevelopmentDetails 6-20
Appendix A User Interface Foundation Classes

HTML Generationcou it e A-1
Error Checking. A-1
ReusableCode.o A-2
Common PRitfalls A-2
AddBULLON . . . A-3
BackBULtON A-3
27 A-4
BULION . . A-5
CancelButton A-7
CompositeFormField. A-7
CountryName. A-8
Detail BULtON. A-9
DomainName.o A-10
DomainNameList.t A-10
EmallAddress.o A-10
EmallAddressList.o A-10
FlleUpLoad A-11
0] 0 0 A-12
Applicability.o A-12
USa0E . . oo A-12
FormRield A-14
FormFieldBuilder A-17

Contents

Vii

FUIName. A-21
GroUPNEME . . . e A-22
HTMLCOMPONENto e e A-22
ImageButton A-23
Imagelabel A-23
INtRaNGE. A-24
1050 A-25
IPAAAressList.o A-26
LabEl .. A-26
LOCalE ..o A-28
MaCAAArESS. . . .o A-28
MaillListName A-28
ModifyBULtON A-29
MUIBULONo A-29
MUtIChOICE. . . .o A-32

Applicability: A-32

USB0 . . ot A-32
MultiFileUpload A-34
NEAArESS.o A-35
NetAdAressList A-35
Ot ON e A-35
Page . . A-37
PagedBlocko A-40
Password A-45

PublicMethods. i A-45
RemoveBuUttoNn. A-46

PublicMethods. i A-46
SaVEBULION. e A-47

PublicMethods. i A-47
SCrollList . ..o A-47

Applicability. A-47

USB0 . .ot A-47

PublicMethods. i A-48
S ST . . o A-55

viii Contents

SNIMPCOMMUNITY . . . oo e e e A-57
SAUSSIONA . . oo A-57
Stylish .o A-59
S A-59
TeXtBIOCK ... A-61
TextRield A-63
TEXt LISt .. A-64
TIMESIAMP. . o et A-64
TIMEZONE. . .ottt A-65
UninstallBUtton A-65
] A-66
UNLiSt o e A-67
UsarName A-68
UserNameListot A-69
VerticalCompositeFormField i i A-69
Appendix B Utility Classes
ArrayPacker B-1
Applicability. B-1
ErrOr. . B-3
ServerScriptHelper.o B-4
Applicability. B-4
USB0B . . oot B-4
Appendix C About Style

Style RS .o e C-1
Supported Styleso Cc-2
Property TYpeS. . ..o e C-2
Boolean. C-2

0] o] C-3
Positiveinteger. C-3
CommON Properties. . ..ot C-3
backgroundColor C-3
backgroundimage. C-3
borderThickness. e C-4
COlOr ot C-4
fontFamily e C-4
fONtSIZe ..o C4
fontStyle. .. o e C-4

fontWeight e C-5

teXtDECOration oot C-5
WIAEh. .. C-5
YOS . e C-5
Bar .. C-5
eMPLYIMageo C-6
eNdIMage C-6
filledimage. C-7
startimage. C-7
BULON. . . . C-7
CanCalBULIONo C-8
LabE. . C-8
MOdifyBULION. C-9
MUtIChoICE.o C-9
Page . .. C-9
PagedBlocko C-10
dividerHeight Cc-11
oo o T C-12
Password C-12
RemoveBULtON C-12
FEMOVEICON. . . o C-13
SaveEBULION. C-13

S S TN . . ot C-13
addICONGIaY. . . oot C-14
FEMOVEICON.o C-14
FEMOVEICONGIAY. . . o .ottt e C-15
SCrollList . ..o C-15
borderThickness.o e C-15
borderColor C-16
sortAscendinglCcon C-16
sortDescendinglCono et C-16
sortedAscendinglCono C-17
sortedDescendinglcon C-17
Valuetype . ..o C-17
SAUSSIONA . . oo C-17
failurelcon C-18
NEWICON . .. C-18
NONEICON. e C-18
NOrMallCoN. C-19
OldICON . . oo C-19
problemicon. C-19

repliedlcon C-19

Contents

severeProblemlcon. C-20
SUCCESSICON. . . .ottt e e et C-20
CLIStNaVIgationt C-20
infoHeight c-21
tabHeight c-21
collapsiblelisto c-21
borderThickness. C-22
collapsed 1CoN . ..ot C-22
expandediCon. C-22
selectedICon . .. oo C-23
unsalectediCont C-23
INFO. .o C-23
OWNICON . . oo C-24
dOWNICONGIAY . . .ottt e e e C-24
typelcon C-25
UPICON. . C-25
UPICONGIAY. . .ottt C-25
taD. . C-25
Possibletargets: C-26
selectedimageleft ... C-26
selectedimageRight Cc-27
unselectedimageleft ... Cc-27
unselectedimageRighto Cc-27
Appendix D Base Data Types
SCalaAr . . D-1
WOId. . . e D-1
Alphanum. D-1
Alphanum plus D-2
0 D-2
Uit . D-2
Boolean D-2
paddr. . .o D-2
NEIWOIK . . D-3
Email ADdress D-3
NEIMESK . .. D-3
00 o D-4
HoStname. D-4

Contents

Xi

Appendix E

Cobalt System Configuration Protocol

Appendix F

ExampleHeaders. E-2
MESSagES . .. o e E-2
CSCP Command SUMMAIY oottt e e ea e E-4
Common Syntax Definitions. i i E-5
CSCPCOMMANAS . ..ottt it e e e e E-6
The AUTHCommandccoiriii i E-6
The AUTHKEY Commandt E-6
TheENDKEY Commandcciiiiiiriiinnnn.. E-6
TheCREATECommand.ttt E-7
TheDESTROY Commandc.iiiiiirinnnnan.. E-7
TheSET Commandc it E-7
TheGET Command.co ittt E-8
TheCOMMIT Commandcoiiiiiiiiiiinanan.. E-8
TheNAMESCommand. ...t E-8
The CLASSESCommandttt E-9
TheFIND Command. ...t E-9
The WHOAMICommand. ...t E-10
TheBYECommand.ttt E-10
CSCPHandler EXteNSIONS. . ..o oo et E-11
TheBADDATA Command., E-11
TheINFOCommand.t E-11
TheWARNCommand.ttt E-12
Built-in Propertiesof Objects i E-12

CCE Class Definitions

Programming Conventionsovuiiinii i F-2
CCEClassDEfinitions. . ..o v v F-2
SV M .o e F-2
NEWOIK . . F-3
ROUE . . F-3
WOTKGrOUD . o vttt e e e F-4
Workgroup Defaults. F-4
USEr ottt F-4
UserDefallts.o F-5
MailList . . F-5
UserEmail F-6
System.Email F-6
SYStEM. TP F-7

xii Contents
DhepParam. F-8
DRCPSEALIC . . o vt F-8

DRCpDYNamIC . .. oot F-8

Contents Xiii

Acknowledgements

I would like to acknowledge the following people who have been essential to writing this
book: Tim Hockin, Jonathan Mayer, Adrian Sun, Mike Waychison, and Kevin Chiu.
Thanks also to Karina Eichmann and Gordon Garb.

What s New in this Document

The following information was added to Beta Draft 9:

® Chapter 5 {{XREF}} was enhanced and revised.

The following information was added to Beta Draft 8:
® Chapter 4, Internationalizing Sausalito, was added.
* Appendix C, Style, was added.
The following information was added to Beta Draft 7:
* Appendix F CCE Class Definitions was added.
* Appendix A, User Interface Foundation Classes, was updated.

* The Fi | eNane attribute in the package file has been removed.

NOTE: If you have been using the Fi | eNane attribute, please remove it
from your package files. See Building a New Service Module on
page 6—3.

* Appendix D, Base Data Types was added.

* Appendix E, Cobalt System Configuration Protocol was added.

Xiv Contents

Chapter 1

Introducing The Sausalito Architecture

Chapter Contents

Introduction
Audience
About this book
Typographical Conventions
Programmatic Conventions
Related Documents
Document Roadmap

Introduction

Cobalt completed its first Web server appliance software architecture in 1998 and began
delivery of Cobalt Qube* and Cobalt RaQ* products that same year. In two short years, the
Web appliance market has taken off. Today, Cobalt RaQs host hundreds of thousands of web
sites in data centers around the world. Cobalt Qubes provide basic web services for thousands
more small businesses and educational institutions.

Software developers and service providers now view the Web as the medium for delivering
services. They increasingly see Web server appliances as the vehicle for cost effectively and
easily delivering these services to the edge of their customers’ networks.

As appliances, these products are fundamentally more cost effective and easier to use than
pre-Internet general-purpose servers. Just as most consumers receive television
entertainment through set-top box appliances on the edge of cable networks, millions of
businesses, previously excluded from the information technology market place, will receive
services through Web-enabled appliances attached to the Internet.

1—2 Chapter 1: Introducing The Sausalito Architecture
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Cobalt recognized from the start that the user interface and underlying software architecture
for these Web appliances must be designed specifically for this task. Cobalt has worked with
leading network providers, including several of the world s leading ISPs and network service
providers, to appliantize their Web services. Their requirements are at the center of Cobalt’s
second-generation software architecture, named Sausalito, which is described in this
developer guide.

Sausalito is specifically designed for delivery of services through the web model. This model
allows services, hosted on the appliance, to deliver content to many users simultaneously
through a graphical user interface.

Sausalito is designed to provide a superb developer platform, with the following goals in
mind.

* Provide an extensible architecture enabling third-party developers to customize,
modularize, and implement services quickly. Sausalito APIs are documented in this
guide, including tools for tuning the user interface and interfacing with the built-in
configuration database. The user interface also includes such features as a software
update indicator and single-button install and delete capabilities.

* Provide an easy to understand environment for non-technical users. Sausalito masks
the complexity of its underlying software and is intended to provide the framework for
maintenance-free services.

* Use open standards for quick development time and strong security. Sausalito is
designed to run on top of Linux and, in addition to its own APIs, uses a number of
standard services and interfaces like Apache and LDAP.

* Provide flexibility to localize User interfaces into multiple languages quickly.
Sausalito includes a language library for all localized data.

Audience

The audience for this document includes developers who create hardware or software
applications that run on Sausalito, Value Added Resellers, and others who want to customize
Sausalito-based systems to fit their requirements.

Chapter 1: Introducing The Sausalito Architecture 1—3
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

About this Book

{{need to update chapter titles} }
This book contains the following sections:

Chapter 2, About The Sausalito Architecture, provides a high-level tutorial of the
components that make up Sausalito.

Chapter 3, User Interface, explains how the User Interface works with code samples and
examples of how to change the style.

Chapter 5, Introducing The Cobalt Configuration Engine describes the interaction between
the underlying software for Sausalito.

Chapter 6, Making Sausalito-Aware Applications, describes the file structure you must use
to create an application that runs on the Qube 3.

Appendix A, User Interface Foundation Classes lists the methods in the User Interface
Foundation Classes (UIFC).

Appendix B, Ultility Classes lists the methods for the Utility Classes.

Appendix D, Base Data Types lists the base data types used in Sausalito. You should be
aware of these data types so that your software does not overwrite them.

Appendix E, Cobalt System Configuration Protocol describes the CSCP protocol.
Appendix F, CCE Class Definitions lists the properties of CCE classes.

NOTE: This draft includes a subset of the set of final chapters and appendices
that will be available when complete. It is being made available in it s beta
form to help third-party developers create applications.

Related Documents

For information on using Sausalito, please see the Qube 3 User s Guide, which is available at
htt p: // www. cobal t . con? support/resour ces/ manual s. ht ni . Information about
Sausalito will also available at ht t p: / / www. cobal t . cont pr oduct s/ i ndex. ht ni .

1—4 Chapter 1: Introducing The Sausalito Architecture
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Document Roadmap

This roadmap tells you where to find information for specific tasks.

Table 1—1 {{need to update this}}

Task Where to find information

Adding a new menu item Adding a New Menu Item on page 3—2
Changing the logo Making Other Style Changes on page 3—8
Changing the background color Changing the User Interface Style on page 3—7
Internationalizing your application Internationalizing Sausalito on page 4—1

Changing the language in the user interface
Adding a new service Building a New Service Module on page 6—3

Interacting with the Active Monitor

Working with the Object Database (ODB) Appendix D
Working with the UIFC classes Appendix A
Working with the Utility classes Appendix B
CSCP Libraries Appendix E
What are the base classes for Sausalito Appendix C
What are the CCE class definitions Appendix F

Conventions Used in this Guide

Typographical Conventions

Bold is used for emphasis, for example:
Each UIFC page should have one and only one page object.
Bold is also used for words found in the user interface, for example:
test.xm is shown adjacent to Style.
Italic font is used for variables, for example:

require ::= string

Chapter 1: Introducing The Sausalito Architecture 1—5
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Italic font is also used for new terms when they are first used, for example,
these widgets are manipulated from a PHP script by the developer.

Couri er is used for program names and code, and web resources, for example:

CCE Aut h command returns NULL for failure or a session key for success.

char *cce_auth_cmd

http://ww. cobal t.com support/resources/ manual s. ht m

Programmatic Conventions

The class definitions use the following conventions:

¢ All class names have the first character capitalized. For example, Syst em If they have
more than one word, the first character of all words is capitalized. For example,
Mai | Li st.

* Nanespace names follow the same rule as class names.

¢ All property names start with an all lowercase first word. If a property name has more
than one word, the first characters of the second word onwards are capitalized. For
example, gat eway and st yl ePr ef er ence are valid property names.

Terminology

Sausalito has its own unique terminology:

Cobalt Configuration Engi ne (CCE): A general name for the entire configuration
architecture.

Cobal t System Configurati on Protocol (CSCP): The protocol which connects
the CCE client to the sessi on manager and the Cobalt Object database. CSCP connections
provide object- database functionality and executes handlers as necessary.

Event : A change in a property of a object within the database.
d i ent : Aprogram using CSCP to request or change information.
Handl er : A program called by CCE to affect an event.

Cobal t Confi guration Engi ne daenpn (cced): The server process which handles
incoming connections and signals.

1—6 Chapter 1: Introducing The Sausalito Architecture
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Chapter 2

About The Sausalito Architecture

Chapter Contents

The Appliance Concept
Abstraction of the System into Objects
Storing the Objects
Manipulating the Objects
Extending the Objects
Watching the Changes
Actuating the Changes
Modularity - Doing Your Own Thing
What Sausalito is Not

This chapter provides a tutorial-style overview of the Sausalito architecture. It describes the
basic concepts, the issues that were addressed in creating this appliance architecture, and the
solutions that were implemented to address them.

The Appliance Concept

When designing software for a general purpose server, the designers must put as few
restrictions on flexibility as possible. However, an appliance does not have this restriction. A
Cobalt appliance is designed with a single goal in mind: providing a full range of services
through a single user interface, while keeping the ease of use of household appliances. This
goal enables us to narrow the scope of the software, and consequentially tightly integrate the
software into the system.

2—2

Chapter 2: About The Sausalito Architecture

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

The Sausalito software architecture is an answer to the appiliance concept. Sausalito allows
Cobalt to provide a single back-end mechanism for monitoring and manipulating the system
software. Through this mechanism, a very simple user interface can operate, while keeping
the details of the backend system logically separate.

This separation of interface and implementation is a cornerstone of reusable and reliable
software design. This allows developers to have a stable exported interface that can be used in
their applications for complete integration into the Cobalt environment. This is one of the
major goals of Sausalito.

Figure 2—1 provides a basic view of Sausalito architecture. The interface provides the glue
between the user interface and back end.

Figure 2—1 Overview of Sausalito

User
Interface

|
'

Back End

Abstraction of the System into Objects

The first step towards separating the interface from the implementation is to separate the data
from the process. System data, such as configuration options and users, can become abstract

groupings of data or objects. These objects are self-contained, dictating only the information

necessary to recreate themselves. An application can define a class or data structure to enable
the system to know about and manipulate its data.

Chapter 2: About The Sausalito Architecture 2—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

This provides developers a flexible way to define new configuration items to the system, as
well as a convenient and single mechanism by which to read all system configuration data.
Figure 2—2 shows the addition of classes and objects.

Figure 2—2 Adding Classes and Objects to Sausalito

User
| nt er f ack

Storing the Objects

Once we have well-defined objects that can accurately represent the system, we need to define
how and where to store them and how to retrieve and modify them. Unlike reading
configuration files, such as /et ¢/ passwd or htt pd. conf, to determine the state of the
system, a good abstraction should provide a single, flexible way to access all system
configuration data.

The Cobalt Object Database (CODB) is provided as a place to store objects. It is not a
database in the sense of commercial relational databases designed to run a corporate
enterprise, but instead store the known state of the system. CODB acts as a buffer between a
user interface and the system itself.

2—4 Chapter 2: About The Sausalito Architecture
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Objects can be stored, retrieved, modified, and destroyed, all without the user interface having
to know about the details of any given application configuration mechanism. Figure 2—3 adds
the Cobalt Object Database (CODB).

Figure 2—3 Adding CODB

User |

nt er f ack

E—

Manipulating the Objects

Now that we have objects that can be stored, created and destroyed, we need to define a
mechanism by which to do these things. In order to provide a manageable and accountable
access method, Cobalt has defined the Cobalt System Configuration Protocol (CSCP), which
connects clients to the Cobalt Configuration Engine (CCE). CCE is the process that
implements CODB.

Chapter 2: About The Sausalito Architecture 2—S5
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

CSCP provides primitives to read, write, create, destroy, and search for objects. To make

accessing CSCP easier, Cobalt provides libraries in several common programming languages,
such as C, Perl and PHP.

Figure 2—4 Connecting the Ul to CCE and CODB

1
E

Extending the Objects

CSCP

Now that application packages can export their configuration data via CODB classes, other
software packages can take advantage of this. Many times, an application package adds some
functionality to an existing object that didn’t exist in the base object. Consider an application
that provides some per-user configuration options. With CODB classes, it is easy to define a
class for this data. Now the UI can create an object of this class (an instance) whenever a user
is created, and destroying the instance whenever a user is destroyed.

There is one more problem, however. A good abstraction of the object knows nothing of the
user interface, and a good user interface engine knows nothing of what classes are available.
How, then, do we associate this new per-user class with a user object?

2—6

Chapter 2: About The Sausalito Architecture

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

CODB provides the ability to extend a class with a namespace. A namespace is a set of
properties, like a class, that piggy-backs onto other classes. We can change our per-user class
into a user namespace. Now, whenever a user gets created or destroyed, the namespace goes
with it. We also solve the issue of association. We know our new namespace is associated with
user objects by it’s namespace association.

Watching for Changes

At this point, we have the Cobalt Configuration Engine (CCE) running a database (CODB)
which stores instances of classes and namespaces. This configuration engine understands the
CSCP protocol to affect changes on the CODB. How do the changes made to the CODB
become changes made to the system?

Application packages can register via configuration files to be notified when certain events
occur. The registration mechanism provides the ability for any software package to register
event handlers (or just handlers) on any class or namespace known to the system. Events
understood by the CODB are create events, destroy events, and modify events.

Now that we can register handlers, our software package can create a handler for any events
about which it is concerned. For example, if we need to add a user to our application s access
list, we might register on the user-create event. When a user is created, our handler is invoked,
and we can do our specific task.

Chapter 2: About The Sausalito Architecture 2—7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Actuating the Changes

When an event is triggered, CCE steps through the list of handlers for that event, and runs
each of them, in turn, until one fails, or there are no more handlers to run.

It is the responsibility of each handler to make the appropriate changes to the system
configuration to actuate the event.

Figure 2—5 Making changes to the system

Config
Fil es

CsCp

———e
-

System
Handl er s|l——=[Conf i gur at i
Files

Modularity — Doing Your Own Thing

At every stage of Sausalito, concern has been given to retain modularity. It is the goal of the
architecture to make adding and removing software packages have no impact on the rest of
the system. This principle should be adhered to as much as possible.

What Sausalito is Not

Sausalito is not a generic data-store. It is not a place for applications to store their data. It is
meant to be a buffer between making abstract changes in the configuration of the system, and
those changes happening on the system.

CCE is not a place to store user-interface definitions. CCE should know as little as possible
about any particular user interface implementation.

2—38 Chapter 2: About The Sausalito Architecture
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Sausalito is not a mechanism for a user interface to trigger system events . The user interface
should not rely on any knowledge of the handlers that are registered on an event.

Sausalito is not a replacement for other security mechanisms. While Sausalito tries to be
secure and cautious in all cases, it should not forego other security methods.

Sausalito is not a replacement for a good backups. Much of the system’s data is stored in files
on the system, not in CODB. Protect your data and back up regularly.

Chapter 3

User Interface

Chapter Contents

Introducing the User Interface
Menu System

Styles

Libraries

Example

Changing the Style

Sausalito is Cobalt s first fully open programming interface. It is designed to enable third-
party developers to create applications that are seamlessly integrated into the look and feel of
the Qube 3 appliance as well as with the design of the Sausalito system. One of the interfaces
within Sausalito is the user interface library, which enables you to:

¥ Add menu items and buttons
¥ Change the look and feel of the user interface style

¥ Build user interfaces and web pages that are consistent with the Qube 3 system

How the Menu System Works

The menu system in the Cobalt administrator s user interface is a dynamic structure. It is
generated from a set of files that define the menus, menu items, and layout. Whenever a user
logs in to the administrator s user interface, the menu structure is examined and generated
automatically.

The structure and contents of the menu is generated from XML files, located under the
[usr/ sausal i t o/ ui / menu directory. These menu files are very simple, and contain one
menu definition per file.

3—2 Chapter 3: User Interface
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Adding a New Menu Item

The example below demonstrates how to add a menu, complete with a menu item, to the
administrator s User Interface (UI) menu. The first thing to add is the menu bar itself.
Figure 3—1 on page 3—6 shows the menu item added through the code below.

helloMenu.xml
<item
i d="sanpl e_hel | owor | dmenu"
| abel ="Hel l o World App"
description="This nenu contains the Hello Wrld application">
<parent id="base_adm nistration" order="100"/>
<litenpr

Menu Attributes

Each menu has several attributes:
¥ id: asystem-unique identifier for this menu entity;
¥ | abel : the string to display in the menu

¥ description: the help text to display in the help area when this menu is moused
over

NOTE: see Using Unique Names on page 3—S3.

Each menu has at least one parent, each of which have several attributes:
¥ id: the system-unique identifier of the parent menu

¥ order: the relative position in which this menu item will be placed; higher number
ranking indicates lower menu placement.

The parent defines the point in the menu system at which this menu item will appear. Now
that we have added a menu bar, we can add a menu item to this bar.

hello.xml
<item
i d="sanpl e_hel | owor| d"
| abel =" Hel | 0"

Chapter 3: User Interface 3—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

description="This item says hello to the world"

url ="/ sanpl e/ hel | o/ hel | oWor | d. php" >

<parent id="sanpl e_hell owor!| dmenu" order="0"/>
</itenpr

Like a menu bar, which is just a special menu item, menu items have i d, | abel , and
descri pti on attributes. However, menu items also define a ur | attribute. The ur| is the
web page to be displayed when the menu item is selected.

Using Unique Names

You must use unique names for triturates to avoid name conflicts. Cobalt recommends that
you choose a vendor-specific name for your modules, and create directories with the vendor
name. For example, if your company name was Ivory, your menu sheets would be
Ivory_style.xm inthe/usr/ Sausalito/ui/menu/lvory directory.

How the Libraries Work

The Cobalt Ul libraries, which are written in PHP4, are composed of a set of object classes
and utility functions. All of these UI libraries are available to developers, and are the
foundation for the entire Cobalt administrator s Ul

The object classes, called the UIFC (User Interface Foundation Classes) define objects such
as buttons, lists, checkboxes, and radio buttons. These widgets are manipulated from a PHP
script by the developer, and then are automatically turned into proper HTML for display to the
user. All the UIFC widgets have been built with the concept of styles. This allows the look of
the entire UI to change, with no code changes. UIFC has also been designed to work
seamlessly with internationalization,commonly referred to as i 18n. See Appendix A for a
complete reference for the User Interface Foundation Classes (UIFC).

NOTE: See Chapter 4 for information on internationalization, coming soon in a
future draft.

The utility functions provide pre-packaged functionality that is commonly needed by web-
based UIFC applications. Things like conversions between strings and hashes, and widget
allocations are greatly simplified by utility functions. See Appendix B for a description of the
utility classes. For information on Styles, see The User Interface Style on page 3—o.

34 Chapter 3: User Interface
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

A Further Example

We’ve already shown some examples of adding a menu, so let’s put all the pieces together and
see how it looks. This example will be expanded in subsequent chapters to show how to
internationalize your application, add handlers, and have it work with Sausalito s Active
Monitor.

menu/helloMenu.xml
<item
i d="sanpl e_hel | owor | dmenu"
| abel ="Hell o Worl d App"
description="This menu contains the Hello Wrld application">
<parent id="base_admninistration" order="100"/>
</itenpr

menu/hello.xml

<item
i d="sanpl e_hel | owor| d"
| abel =" Hel | 0"

description="This item says hello to the world"

url ="/ sanpl e/ hel | o/ hel | oWor | d. php" >

<parent id="sanpl e_hell owor!| dmenu" order="0"/>
</itenp

web/helloWorld.php
<htm >
<body bgcol or="#ffffff">
<hl> Hello, World! </hl>
</ body>
</htm >

Makefile
Makefile for sanple hello_world Sausalito application
#
Adding a nmenu, nenu item and sinple page

VENDOR = sanpl e
APP = hello
SAUSDI R = /usr/sausalito/

Chapter 3: User Interface 3—5
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

MENUSRCS = nenu/ hel | 0. xml nenu/ hel | oMenu. xni
MENUDI R = $(SAUSDI R) / ui / menu/ $(VENDOR) / $(APP)
VEBSRCS = web/ hel | oWor | d. php

VEBDI R = $(SAUSDI R) / ui / web/ $(VENDOR) / $(APP)

all:
nothing to do, yet

install: all nmenu-inst web-inst

menu- i nst: $(MENUSRCS)
mkdir -p $(MENUDI R)
install -o root -g root -m 644 $(MENUSRCS) $(MENUDI R)

web-inst: $(WEBSRCS)
nkdir -p $(VWEBDI R)
install -o root -g root -m 644 $(WEBSRCS) $(WEBDI R)

Putting all of these together creates the web page shown in Figure 3—1 on page 3—6.

Now, we can take advantage of the Ul libraries. It might seem odd that the next example is, in
fact, longer than the non-UIFC version, but for a use as trivial as this, the overhead of UIFC
outweighs the benefits. When pages get longer and more complex, however, the benefits
dwarf any overhead.

web/helloWorld.php
<?php
/1l PHP file to display "Hello, Wrld"

i ncl ude(" Server Scri pt Hel per. php");

$servhel p = new Server Scri pt Hel per();

$factory = $servhel p- >get Ht rl Conponent Fact ory("base-ant');
$page = $f actory->get Page();

print ($page- >t oHeader H M ());

$l abel = $factory->getLabel ("Hello, World!", false);
print($l abel ->toHm ());

3—6 Chapter 3: User Interface
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

print ($page- >t oFooterH mM ());
?>

Putting all these files into place results in the screen in Figure 3—1.

Figure 3—1 Hello World in the Cobalt Menu

Fir Bl v G0 Crmmaside wep
« + 3 it a o + o () i A
Bk e Caarh Heacape Prind Leariy Shap e

T sl Bt b ook [coheimy Sdommeiclnt prptimaterses o {0 s Fatid

1 o Googie g Velow Fugem || Crasssh

& mm & NS GP [[E o2

The User Interface Style

How Styles Work

The Ul styles are defined in St yl e definition files. The St yl e definition file contains all the
configurable items of the look and feel of the UIFC s visual appearance. You can modify this
file to change logos, background colors, text, and other features. See The User Interface
Style on page 3—6.

Chapter 3: User Interface 3—7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Changing the User Interface Style

Style interacts with the User Interface Foundation Classes (UIFC) that are described in
Appendix A. Most of the widgets depend on St y| e to set background images and colors, font
size and weight, and other parts of the visual elements.

Sausalito ships with one style file: trueBl ue. xm . You can modify this file and save it as
your own style file. You must give it a new name and create a new directory for your own
style. The following example gives you high level instructions for creating a directory for
your new style sheet, copying and modifying the style file.

IMPORTANT! You must make a copy of t r ueBl ue. xnl . Modifying it directly
without making a backup is asking for trouble.

1. Change directories to / usr/ sausal i to/ ui/style.

2. Create a directory with your vendor name. Type:

mkdi r vendor_styl e
3. Copy the style file, t rueBl ue. xm , tovendor_style. xmn .
4. Move vendor _styl e. xm to the vendor_style directory.
5. Add any graphics or other files needed for your style file.

The following is an example of modifying the t r ueBl ue. xnl file. In this example, the
following UI properties were changed, as shown in Figure 3—2 on page 3—S8.

¥ trueBl ue. xn was copied and saved to t est . xm inthetest _styl e directory;
the word t est is shown adjacent to Style in Figure 3—2 on page 3—S8.

¥ The color value for the aLi nkCol or value was changed to #0033CC.
¥ The title alignment was changes from left to right by modifying the t abAl i gn value.

¥ The font size was changed by modifying <pr operty nanme="f ont Si ze"
val ue="12pt"/>to <property nane="font Si ze" val ue="18pt"/>.

Similarly, changes were made to the background and divider colors of the table cells, and to
the button font and colors, and to the alignment of the image..

3—8 Chapter 3: User Interface
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Below is an example of a modified style file.

Figure 3—2 Modified Style File

Fi= [df YVies Ga Cammaricslz Help
<« + 3 i s m 4+ o 0 o
Back [T Seach HERCApE Py Bocdrl S Eiom |

3 =i Bogirorie & Locelion fheep . ety dded SuwmscLint . plig o cozeraat | @47 Wkl Reisled

7| o g g Vil P 7 Chanety

dccounl

Email
Disk Usage
Persontl darmation

Full M dwd rd s trotor

Languagn Prelsmnce -EB‘-II: From Brosaer Oplionss: -l_|

Sn Tk |

Pl Passasrd fpmn]

Making Other Style Changes

You can make other style changes in addition to the ones shown in Figure 3—2 by making
further modifications to your vendor_style file.

You can substitute your logo for Cobalt s logo by searching for the line:
<property name="| ogo" val ue="/1i bl mage/topLogo.gif"/>

and putting the . gi f file for your logo in place of t opLogo. gi f .

Chapter 4

Internationalizing Sausalito

Chapter Contents

i18N: a world tour
Terminology
How Internationalization Works
Using Domains, Tags, and Locales
Using Interpolation
Internationalization Libraries
Internationalization Command Line Interface
Internationalization Example

118N: A World Tour

This chapter explains how to internationalize and localize Sausalito.

Terminology

This chapter uses two terms: internationalization, which is referred to as i 18n, and
localization, which is referred to as | 10n.

Internationalization refers to the operation by which a set of programs are made aware of and
are able to support multiple languages. This is a generalization process by which the programs
are untied from calling only strings of a locale or other locale-specific habits, instead of
connected to generic ways of doing the same. Program developers can use various techniques
to internationalize their programs. GNU get t ext offers one of these standards. For more
information about get t ext , see

http://ww. gnu. or g/ manual / gettext/htm _nono/ gettext. html .

4—2

Chapter 4: Internationalizing Sausalito

Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

Localization means the operation by which, in a set of programs already internationalized, the
developer gives the program all needed information so that it can adapt itself to handle its
input and output in a fashion that is correct for some native language and cultural habits. This
is a particularisation process, by which language and cultural habits. This is a particularisation
process, by which generic methods already implemented in an internationalized program are
used in specific ways. The programming environment puts several functions to the
programmers disposal which allow this runtime configuration. The formal description of
specific set of cultural habits for some country, together with all associated translations
targeted to the same native language, is called the locale for this language or country. Users
achieve localization of programs by setting proper values to special environment variables,
prior to executing those programs, identifying which locale should be used.

How Internationalization Works

The Sausalito architecture provides a simple-to-use interface into a database of localized
strings used for internationalizing applications. This i 18N interface is similar to the GNU
get t ext interface, and is, in fact, a higher-level wrapper than encapsulates GNU get t ext
functionality.

Like GNU get t ext , the Sausalito i 18n library allows developers to create their own
databases of localized strings, and provides an interface for accessing that database from
within applications. The Sausalito i 18n wrapper library adds the following new functionality:

¥ Strings fetched from the library are subject to an interpolation process, in which user-
supplied variables and even other internationalized strings can be automatically
substituted into the localized string.

¥ Access to a set of routines for properly escaping the fetched strings for use in web
applications, that is, for use in HTML documents or JavaScript programs.

¥ Automatic negotiation of the best possible locale, from a preference-ordered list of
locales.

Chapter 4: Internationalizing Sausalito 4—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Using Domains, Tags, and Locales

The Sausalito i 18N library manages a database of localized strings. Each application or
module is granted it’s own namespace within the database. This namespace is a called a
domain. Within each domain, individual messages are identified a string known as the
message tag.

When an application retrieves a message from the i 18N database based on the message’s
domain and message tag, the i 18n searches the database for a localized message that most
closely matches the preferred locale.

Domains

Tags

A domain is a grouping for a similar set of resources, for example, the sendnai | package can
be a unique domain. In practical terms, localization strings are packaged by domain. Each
domain defines the default language for its use in its own pr op file. This file contains only a
locale specification. The file is located in the same directory and locale property files except
it’s name is derived from the domain rather than the locale, for example,cobal t . prop for
the Cobalt domain.

Developers retrieve message strings from the | 18N database by specifying both the domain
and the message id for each string.

A tag identifies a text string within a domain of strings for used in interpolation and | 18N.
The tag identifies the localized string. The localized string is identified by the t ag specified in
the function call and the donmai n specified within the | 18N object. The locale used is the one
negotiated during the creation of the | 18N object. Developers retrieve message strings from
the | 18N database by specifying both the domain and the message id for each string.

Locale

Locales are specified by strings that start with an ISO-639 two-letter language code, followed
by an optional ISO-3166 two letter country code and then an optional variant, all separated by
underscores.

4—4

Chapter 4: Internationalizing Sausalito

Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

In summary, the grammar for a locale identifier is:

locale_id := lang-code ['_' country-code ['_’' variant-code]]

wher e | ang- code, count ry-code, and var i ant - code are all alphanumeric codes
defined in ISO-639 and ISO-3166.

Following are some example locale identifiers:
¥ en: Generic english
¥ en_US: English, as spoken in the United States
¥ ja_JP_EUC Japanese, as spoken in Japan, the EUC variant.

When the i 18n library is initialized by an application, a comma-delimited list of locales is
supplied to the i 18n library. This list of locales indicates the various locales that the user can
understand, in order of preference. The i 18n library uses an intelligent algorithm to attempt
to select the best available locale for each domain because not all domains support the same
set of locales, for example: en_USoren, j a.

How Strings Are Added to the System

Adding new strings to the system in a three-step process:

1. Anew . po file is created. This . po file defined all the message strings for one domain and
one locale.

2. The . po file is compiled into an . no file using the msgf nt tool.

3. The . no file is placed in the appropriate directory beneath
/usr/sharel/l ocal e/l ocal e/ LC_NMESSAGES.

Using Interpolation

Whenever a string is fetched from the i 18n library, it is subject to a process called
interpolation. Interpolation allows user-supplied variables to be intelligently substituted into
the string in various places. It also allows a string to contain references to other messages in
the i 18n database, with are expanded to full messages when interpolation occurs.

As a quick example, if the following string were stored in the i 18n message string database:

Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

"Hello, my nane is [[VAR nane]]."

The i 18n_get function is called such that the user supplied variable name was set to Bob, the

following string would be returned by the library:
"Hell o, my nane is Bob."

Interpolation Rules

Every time a localized string is retrieved from the | 18N database, it undergoes interpolation

according to the rules defined below.

Rule 1. The string is subdivided into a list of tokens according to the following grammar:

string := token*

token := (text | tag)

tag := [[domain tagnane var*
var := , key = value.

text := escaped-string

domai n : = escaped-string

tagnane : = escaped-string

key := escaped-string

val ue : = escaped-string

1]

NOTE: The t ag grammar interpolates the tag configuration in this format and

substitutes variables into the string.

Rule 2. Strings are unescaped according to the following rules:

\n -> newine
\b -> backspace
\a

\f -> fornfeed
\n -> newine

\r =->return

4—6

Chapter 4: Internationalizing Sausalito

Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

\'t ->tab
\v ->vertical newine

\(char) -> literal character
Rule 3. Tags are subject to the following expansion rules:

If the domain equals VAR, then variable expansion occurs. The variable specified in t agnane
is looked up in the current hash of variables. Its value is interpolated according to these rules
and its value is substituted here.

If the domain is not equal to VAR, than the domain token is interpreted as the name of ai 18n
domain. The t agnane token is interpreted as a message identifier, and the appropriate sub-
string is fetched from the i 18n database and interpolated.

Rule 4. The expanded unescaped tokens are reassembled into a single internationalized string.

The i18n Interface

Application developers use the following interface to fetch properly interpolated and escaped
strings from the i 18n database. Generally, the programmer will first call a constructor to
create a new i 18n object, perform a number of fetch operations, and then destroy the | 18n
object.

The i 18n object performs it’s own memory management on strings that it returns. When the
I18n object is destroyed, all memory allocated for various strings is freed automatically.

The i 18n library is a C library, but Perl and PHP bindings are provided in addition to the C
interface. These various interfaces to the i 18n library are documented below.

The 118n C-language interface

The function prototypes for the C-language interface are in the following i ncl ude file:

[usr/sausalito/include/cce/il8n.h

The link library for i 18n is in these directories:
/usr/sausalito/lib/libil8n.a (library for static |inking)

/usr/sausalito/lib/libil8n.so (library for dynam c |inking)

Chapter 4: Internationalizing Sausalito 4—7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

The function interface for the C-language interface follows.

i 18n_handl e *i 18n_new (char *donmai n, char *| ocal es)

Summary: constructs a new | 18n object, and returns a pointer to it.

Parameters
domai n: identifies the default domain to use for operations where domain is omitted.

| ocal es: a comma-delimited list of locale identifiers, listed in order of preference. This list
of locales is used to choose the best locale for each domain when strings are retrieved from
the database.

Returns: NULL for failure. Otherwise, returns a handle to a newly constructed i 18N object.

void i 18n_destroy (i18n_handl e *handl e)

Summary: destroys an i 18n object, cleaning up all memory allocated by the i 18n object.

Parameters
handl e: the i 18n object to be destroyed.
Returns: Nothing.

i 18n_vars * i18n_vars_new (void)

Summary: constructs a new object used to storing an associative array of variables for use by
the various i 18n i nt er pol at e and get functions.

Parameters
None

Returns: A pointer to a new i 18n_var s object (a GHashTabl e).

void i18n_vars_add (i 18n_vars *v, char *key, char *val ue)

Summary: adds a new key-value pair to the i 18n_var s object. Copies of both the key and
value are stored within the i 18n_var s object. If this object is passed to a

i 18n_i nt er pol at e or similar function, it will be used during interpolation to expand the
VAR tags.

4—8 Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

Parameters

v: a pointer to a valid i118n_vars object key -- a null-terminated string indicating the variable
name

val ue: a null-terminated string indicating the value of the named variable.
Returns: Nothing.
void i 18n_vars_destroy (i18n_vars *v)

Summary: destroys an i18n_vars object, and frees all memory associated with it.

Parameters
v: the pointer to the i 18n_var s object to destroy
Returns: Nothing.
char *i18n_interpolate (il1l8n_handle *h, char *str,
i 18n_vars *vars)
char *i18n_interpolate_htm (i1l8n_handle *h, char *str, i18n_vars *vars)
char *i18n_interpolate js (il1l8n_handle *h, char *str,
i 18n_vars *vars)

Summary: These three functions provide direct access to the interpolation functionality
within the i 18n library. The i 18n_i nt er pol at e function does not escape it’s output at all.

The i 18n_i nter pol at e_ht m function performs an additional escaping expansion on the
string it returns, escaping it appropriately for use in HTML content.

Thei 18n_i nt er pol at e_j s function performs additional escaping, similar to the
i 18n_i nterpol at e_ht m function, except that the string is escaped appropriately for use
in JavaScript content.

Parameters
h: a pointer to a valid i 18N_handl e object.

str: anull-terminated string to subject to interpolation, as described above.

Chapter 4: Internationalizing Sausalito 4—9
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

var s: a pointer to a valid i18n_var s object. This object will be used to find values for all
variables needed during string interpolation.

Returns: A null-terminated string containing the results of interpolation on the string str.
Optionally, this string can also have been escaped for use in HTML or JavaScript content.

char *i18n_get (i 18n_handle *i, char *tag, char *domain

i 18n_vars *vars);

char *i18n_get _htm (i 18n_handl e *i, char *tag, char *domain,
i 18n_vars *vars);

char *i18n_get js(i1l8n_handle *i, char *tag, char *domain,

i 18n_vars *vars);

The _get functi ons are identical to the _i nt er pol at e functions, except that the
message identified by domain and tag is fetched, and then interpolated.

char *i18n_strftine(i18n_handle *i, char *format, time_t tine);
char *i18n_get datetinme(i18n_handle *i, time_t t);

char *i18n_get date(i18n_handle *i, tine_t t);

char *i18n_get _tine(il8n_handle *i, tine_t t);

Summary: these four functions get the time in the correct format for the current locale. Given
a format that is identical to the one for st r f t i me will format, the epochal time as found in
ti me_t to the current locale settings

Parameters

i 18n: the currenti 18n object.

format : the format to print the string in: %, %X, and %C are useful.
t: The epochal time to format.

Returns: A pointer to a string formatted to the specified time

4—10 Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

The i18n PHP Interface

Description: Constructor
Syntax: $i18n = new i 18n (dommi n, | anguages)
Parameters

domai n: sets the default domain to use for interpolation when domain is not explicitly
specified.

| angs: a comma-delimited list of supported locales specified in order of preference, for
example, j p, sh, oren.

Returns: a new i 18n object.

Object Methods

function i 18N($domai n = , $langs = "")

Description: constructor

Parameters
domai n: a string that describes the domain

| angs: an optional string that contains a comma separated list of preferred locale. Most
important locales appears first, that is, en_US, en_AU, zh, de_DE.

function get($tag, $dommin = , $vars = array())

Description: get a localized string

Parameters
tag: the tag of the string. Identical to the nsgi d string in the . po file

domai n: the domain of the string in string. Identical to the . po or . no file name without the
extension. Optional. If not supplied, the one supplied to the i 18n constructor is used

Chapter 4: Internationalizing Sausalito 4—11
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

var s: a hash of variable key strings to value strings. Optional. If the hash contains " nane"
=> "Kevi n" and the string in question is My nanme is [[VAR nane]]",then" My nane
i s Kevin" is returned.

Returns: a localized string if it is found or the tag otherwise.

function getJs($tag, $domain = "", $vars = array())

Description: get a localized string and encode it into JavaScript-friendly encoding

Parameters

domai n: the domain of the string in string. Identical to the . po or . no file name without the
extension. Optional. If not supplied, the one supplied to the i 18N constructor is used

vars: a hash of variable key strings to value strings. Optional. If the hash contains
“name" => "Kevin" and the string in question is" My nanme i s [[VAR nane]]", then
"My nanme is Kevin" isreturned.

Returns: a JavaScript-friendly localized string if it is found or the tag otherwise.

function getH m ($tag, $domain = "", $vars = array())

Description: get a localized string and encode it into HTML friendly encoding

Parameters
tag: the tag of the string. Identical to the nsgi d string in the . po file

domai n: the domain of the string in string. Identical to the . po or . np file name without the
extension. Optional. If not supplied, the one supplied to the i 18N constructor is used.

vars: a hash of variable key strings to value strings. Optional. If the hash contains
"name" => "Kevin" and the string in question is" My nanme i s [[VAR nane]]", then
"My nanme is Kevin" isreturned.

Returns: a HTML friendly localized string if it is found or the tag, otherwise.
function interpol ate($nmagicstr, $vars = array())

Description: get a localized string out of a fully qualified tag

4—12 Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

Parameters

magi cstr: the fully qualified tag of the format:
“[[" . <domain> . "." . <tag> (. "," . <key>. "=" . <value>)* . "]]"

var s: a hash of variable key strings to value strings. Optional.
Returns: a localized string or magi cstr if interpolation failed.
function interpol atelJs($magicstr, $vars = array())

Description: get a localized string out of a fully qualified tag and encode it into JavaScript-
friendly encoding.

Parameters

magi cstr: the fully qualified tag of the format:
“[[" . <domain> . "." . <tag> (. "," . <key>. "=" . <value>)* . "]]"

var s: a hash of variable key strings to value strings. Optional.
Returns: a JavaScript-friendly localized string or nagi cst r if interpolation failed.
function interpol ateH m ($magi cstr, $vars = array())

Description: get a localized string out of a fully qualified tag and encode it into HTML-
friendly encoding

Parameters

magi cstr: the fully qualified tag of format
"[[". <domain>."." . <tag> (. "," . <key>."=".<value>)*."]]"

var s: a hash of variable key strings to value strings. Optional
Returns: a HTML-friendly localized string or magicstr if interpolation failed.
function getProperty($property, $domain = "", $lang = "")

Description: get a property value from the property file
/ usr/ shar e/l ocal e/ <l ocal e>/ <domai n>. pr op. Properties are defined as
<name>: <value>\n in the file. Each property is on its own line. Comments start with #.

Chapter 4: Internationalizing Sausalito 4—13
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Parameters
property: the name of the property in string

donmi n: the domain of the property in string. Optional. If not supplied, the one supplied to
i 18N constructor is used.

| angs: an optional string that contains a comma separated list of preferred locale. Most
important locales appears first, that is, en_US, en_AU, zh, de_DE. Optional. If not
supplied, the one supplied to i 18N constructor is used.

function getFile($file)

Description: get the path of the file of the most suitable locale, for example, if / | 0ogo. gi f
is supplied, locale j a is preferred, and/| ogo. gi f,/1 ogo. gi f.enand/| ogo. gi f.j a are
available, /1 ogo. gi f. | a is returned.

Parameters
file: the full path of the file in question
Returns: the full path of the file of the most suitable locale.
function get Avai |l abl eLocal es($domain = "")
Description: get a list of available locales for a domain or everything on the system
Parameters
domai n: i 18n domain in string. Optional
Returns: an array of locale strings.
function getlLocal es($domain = "")
Description: get a list of negotiated locales
Parameters

donmi n: i 18n domain in string. Optional.

Returns: an array of locale strings, the first one being to most important, and so on.

4—14 Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

function strftime ($format = "", $tine = 0)
Description: wrapper tostrfti me()
Parameters
f or mat : the format parameter to st rfti me()
ti me: the epochal time

Returns: astrftine() formatted string

Internationalization Example

NOTE: Description and code coming soon

This is the code used to create this menu.
nmsgi d "hel | oMenul t ent

msgstr "Bonjour"

nsgi d "hel | oMenul t em hel p"

msgstr "Ceci dit Bonjour a | a Monde"

nmsgi d "hel | oMenu”
msgstr "Bonj our Monde App"

nsgi d "hel | oMenu_hel p"

msgstr "Ceci est |’ application Bonjour Mnde"

nmegi d "helloString"
msgstr "Bonj our Monde!"

Bon j our Monde!

Chapter 4: Internationalizing Sausalito 4—15
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

This is the Makefile.

Makefile for sanple hello_world Sausalito application

VENDOR = sanpl e
APP = hello

SRCS = en fr
1 18NDI R = /usr/share/l ocal e/

al | :

nothing to do for all

install:
for ain $(SRCS); do \
DEST=$(| 18NDI R) / $$a/ LC_MESSAGES; \
mkdir -p $$DEST; \
msgf mt $$a/ $(APP) . po -0 $$a/ $(VENDOR) - $(APP) . nD ; \
install -o root -g root -m 644 $$a/*. no $$DEST; \

done

4—16

Chapter 4: Internationalizing Sausalito
Beta Draft 9. Copyright ' 2001.Cobalt Networks, Inc. All Rights Reserved.

Figure 4—1 Internationalized Hello World example
4 Gaogle ¥ Vel Fages [Chanrels

Users and Groaps

Emall Sereices Borjor kiorch!
Fila Servicis

VED D areoEE

Hebsork Services

Safhvars | odaties

FeEleim

WMaintenance

Usage mdormakion

Aedive Monitor
Eongour Monde App

Chapter 5

Introducing The Cobalt Configuration Engine

Chapter Contents

CCE - The Cobalt Configuration Engine
Basic Concepts
How Data Flows Through CCE
The CCE Daemon
Command-Line Parameters
CSCP - The Caobalt System Configuration Protocol
CODB - The Cobalt Object Database
Schemas
How to Read XML Syntax Descriptions
Schema Syntax
Sample Schema Definition File
Handler Registration
Events
Handlers
Stages
File Naming
Sample Handler Registration File
Libraries
C
PHP
Perl
Manipulating the CceClient from the Command Line
Example

52 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Chapter Contents
Make a schema

Manipulate from hello_world
Make and register handlers
Manipulate from hello_world

The Cobalt Configuration Engine (CCE)

If the user interface is the face of the Sausalito Architecture, the Cobalt Configuration Engine
(CCE) isthe brains. CCE isthe agent by which the user interface affects changes on a system.
It provides a unified interface to the task of configuring a system, and provides an abstraction
layer between the user interface and the underlying system software.

CCE alows the development of a user interface that istruly flexible-it does not need to have
intimate details about the underlying system. CCE is also designed to be extremely flexible,
and allow developers to add new configuration options easily. Devel opers can extend CCE in
the following ways:

1. Add configuration definitions to define new configurable applications (classes).

2. Add configuration information to extend the number of configurable options for an
existing application (namespaces).

3. Add to thelist of things that CCE does when configurable options change (handlers).

Basic Concepts

CCE is broken into several logical units for easier understanding. The major pieces of the
CCE system are;

* The CCE daemon (cced), which handles incoming connections, sessions, and signals.

* The Cobalt Object Database (CCDB), which maintains the object store that reflects the
current configuration of the system.

* The Cobalt System Configuration Protocol (CSCP), which isthe protocol, or language,
that CCE uses to communicate with clients.

Chapter 5: Introducing The Cobalt Configuration Engine 5-3
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

The CCE client library (I i bcce), which provides routines for clients to better access
CCE viaCSCP.

The event handlers, which are the programs that make CCE changes take effect on the
system itself.

The cced maintains the configuration state of the system in a set of objects representing the
configurable applications, such as email and file sharing. These objects are stored internally
by CODB. System configuration files are generated or modified by event handlers, which are
triggered by a client making changes through CSCP. A client can be either auser interface, or
aprogram written to interface with CCE.

Figure5-1 CCE Block Diagram

How Data Flows Through CCE

From start to finish, getting data to do the right things and go to the right places can seem
complicated. The general flow of data through CCE is asfollows:

Packages register via configuration files for notification of when properties of objects
change, or when objects are created or destroyed, which are commonly known as
events.

cced listens for incoming clients.
A client connects to cced, which communicates using the CSCP protocol.
The client gets or sets properties, or creates or destroys objects to configure the system.

cced determines which handlers need to run to actuate events from the client, and runs
them.

54 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

* The handlers communicate with cced, if needed, via CSCP.

¢ The handlers each do their work and exit, indicating their state of success. See “Bye”
on page 5-21. If all handlers succeed, the changes are saved to the CODB. Otherwise,
changes are ignored and discarded.

* cced returns the status of the transaction to the client via CSCP.

Figure 5-2 illustrates the flow of CCE data.
Figure5-2 CCE Process Flow

’ Emr makes ﬁ..-u-nh Up (. Commit
changes and Hun ACCEES to
Hamnadlers Darahase

Flush
Changes

The CCE Dagmon

The CCE daemon (cced) is the server process that implements the core of CCE. cced accepts
incoming client connections on a UNIX domain socket, and initiates the CSCP protocol; see
“The Cabalt System Configuration Protocol (CSCP)” on page 5-5. Each incoming connection
ishandled by achild process of the master cced process, leaving the master processto handle
new connections and signals. While active, the child processis responsible for running
handlers, maintaining and updating the object database, and for communicating with the
client. The master process aso catches signals delivered to it, such as an interrupt signal, and
distributes the signal to al the children, accordingly.

Chapter 5: Introducing The Cobalt Configuration Engine 55
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

In order to preserve dataintegrity, all CSCP write operationsfor al clients are serialized. This
does not affect the performance of the system, because there are not typically multiple
simultaneous admin sessions. For several reasons, cced must run asr oot . In order to protect
the system, users must authenticate to cced to do most tasks: see “The AUTH Command” on
page E-6. This authentication is passed through the Linux system of Pluggable
Authentication Modules (PAM). For more information on security in CCE, see “Introducing
Cobalt Security” on page 7-1.

Command-Line Parameters

Usually, cced does not need command-line parameters. However, for debugging handlers or
CCE itsdlf, it is sometimes useful to change certain aspects of cced’s behavior. The following
command-line parameters are available;

Table5-1 cced Command-Line Parameters

Command-line Description

parameters

-c directory set the handler configuration directory, /usr/sausalito/conf is the default

-d number set the debug mask; 0 = no debugging (default), Oxffffffff = full debugging
and profiling

-nd do not run as a background daemon

-nf do not fork child processes, handle only one client

-nh do not run any handlers

-ro read-only; do not save database changes, implies-nh

-st seconds set the client authkey timeout, 1 hour (3600 seconds) by default

-V verbose

-v print version information and exit

-w print even more version information and exit

The Cobalt System Configuration Protocol (CSCP)

The Cobalt System Configuration Protocol (CSCP) is asimple protocol for communication
between clients and the CCE, and between the CCE and event handlers. It is a text-based,
newline delimited protocol, similar in formto FTP or HTTR. It is simple enough to be
understood and debugged without the need for special tools.

56

Chapter 5: Introducing The Cobalt Configuration Engine

Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

In order to use CCE, you must use CSCP. The simplest way to use CSCP iswith the
command-linetool / usr/ sausal i t o/ bi n/ ccecl i ent . Thistool gives you full access to
CSCP directly. In order to make CSCP easier to use from within programs, wrapper libraries
are provided for severa popular languages.

For detailed information about the protocol specification, see Appendix E, “Cobalt System
Configuration Protocol”.

The Cobalt Object Database (CODB)

Schemas

The Cobalt Object Database (CODB), issimilar in many respectsto both traditional databases
and object systems. It also differsin some significant ways. Every object stored within CODB
has a unique identifier, its Object ID (OID), which CSCP uses to identify instances. Like
traditional relational databases, CODB has a query language that allows the developer to
access stored data. Unlike atraditional database, CCE uses CSCP, rather than SQL .

Thetraditional form of object manipulation is through object methods. These methods
encapsulate and protect object data, stored in properties. CODB, by design, takes a different
approach. The Sausalito system deals exclusively with properties. Unlike traditional object
systems, there are no directly executing methods in Sausalito. Instead, Sausalito provides
events and event handlers, which act as method code.

The structure of objects within CODB is defined by schemas which are provided by third-
party vendors, Schemas, in the form of schema definition files, provide thecl ass, property,
andt ypedef definitions necessary to impose order on the datawithin CODB. The syntax of a
schema definition fileis simple XML, and is very flexible.

How to Read XML Syntax Descriptions

Before proceeding, it is prudent to briefly cover the pieces that make afile XML. XML isa
plain-text file format, similar to HTML (or their common ancestor SGML). XML files are
parsed, and the data in them is stored in amanner that is useful to the controlling application.

Chapter 5: Introducing The Cobalt Configuration Engine 5-7
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Whitespace

Throughout XML files, most whitespace characters (spaces, tabs, and newlines) are ignored.
The only exceptions to this rule are within quoted strings and within the content field of an
element. In these cases, called significant whitespace, whitespace is preserved.

Symbols
To better represent the syntax used in this explanation, some symbols are necessary.
Table 5-2 explains symbols herein.
Table5-2 Symbols Used in Schemas

Symbol Definition

SP represents one whitespace character (space, tab or newline).

SQ represents one single-quote ().

DQ represents one double-quote ().

asterisk (*) represents zero or more occurrences of the previous expression.
plus (+) represents one or more occurrences of the previous expression.

Elements and Content

All XML files consist of one or more el enent s. Each element has a case-insensitive name
and a set of zero or more at t ri but es. Elements can, but are not required to have cont ent .
Each element is begun by aan openi ng t ag with the following form:

"<" SP* name SP* attribute* SP* ">"
The content field follows the opening tag. Content fields are free form, and al characters are
retained, including whitespace. The content of one element can be, and frequently is, one or
more child elements. This containership is arbitrarily deep, and is defined by the specific

XML format being used. The content field isterminated by acl osi ng t ag of the following
form:

"</" SP* nanme SP* ">

Because the content field is optional, it is frequently empty. A second form of opening tag is
allowed, which indicates the absence of a content field:

"<" SP* name SP* attribute* SP* "/>"

5-8 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Attributes

As noted above, an element can have zero or more attributes. Attributes are always key-value
pairs, and the value is aways a quoted string. Attribute keys are always alphanumeric, and,
like element names, are not case-sensitive. Attributes have the following form:

SP+ key SP* "=" SP* QJ value QU

Comments

In addition to elements, XML files can include comrent s. Comments can be outside of any
element, or in the content of any element. Comments begin with the string <! - - and end with
the string - - >. Any text within acomment isignored.

Escape Sequences

Because some characters, such as < and > are used by the XML language itself, it is necessary
to use an aternate sequence of characters, called an escape sequence, to represent these
reserved characters. The following escape sequences are recognized by XML.:

Table5-3 XML Escape Sequences

Literal Character Escape Sequence
< (less-than) <
> (greater-than) >
& (ampersand) &
" (apostrophe) & apos;
" (quote) & quot;

(space)
Sample XML

<l-- This is a sanple XM. file, illustrating syntax -->

<XM_H enent NAME="Sanpl e" >
<SubH enent nane="Sub Sanple 1">
This is & t;content> for a " SubE enent " ;
</ SubH erent >

Chapter 5: Introducing The Cobalt Configuration Engine 59
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

<SubH enent Nane = "Sub Sanpl e 2" Col or="green"></ SubE erent >

<SubHl enent
Nanme="Sub Sanple 3" Note = "&anp;"/>
</ XM_H enent >

Schema Syntax

Schema definition files can include any of the following elements:
e SCHEMA
* CLASS
* PROPERTY
e TYPEDEF

Syntax: SCHEMA

A SCHEMAi's provided to identify a complete schema definition to the system. This element
provides such information as schema name, vendor, version and any other information a
vendor might find useful to store with their schema definition. All child elements of a schema
are grouped together by the schema definition.

If no SCHEMA element is defined, or other top-level elements are defined, the non-schema-
wrapped elements of the description file are assumed to be part of a schema with NAME set to
the current filename (minus the . schenma extension), and VENDCR and VERSI ON set to the
empty string (*"). Cobalt recommends that every schema description file contain explicit
SCHEMA elements, rather than rely on the default behavior.

Bl ement name: " SCHEMA'

Required attributes: "NAMVE', "VENDCR', "VERSI O\’
ptional attributes: any

Requi red content: none

ptional content: "CLASS' or "TYPEDEF' el ements

5-10

Chapter 5: Introducing The Cobalt Configuration Engine

Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Valid Parents: none

Table54 SCHEMA Attributes

Attribute Description

NAME The vendor-assigned name of the schema. This can be any string.

VENDCR The unique name of the schema’s vendor. This can be any string.

VERSI ON The vendor-assigned version of the schema. This can be any string, but by
convention is an integer or floating point number for example: "1" or
"3.1415".

Syntax: CLASS

A CLASSisthe formal definition of an object's structure. An object has all the properties of its
QLASS, and only the properties of its CLASS.

Table5-5

" LASS"
Required attri butes:
pt i onal
Requi red content:
pt i onal
Valid Parents:

CLASSAttributes

El ement nare:
" NAMESPACE"

none

content: "PRCPERTY' el enents

attributes:

Attribute

Description

NAVE

The unique name of the class being defined, or the name of the class being
extended. This must be a C-style symbol, that is, it must start with aletter or
underscore (), followed by any number of |etters, digits, or underscores.
NAME should, per convention, start with an upper-case |etter, for example:
"Foo".

VERSI ON

The version number of this class structure. This can be any string, but by
convention is an integer or floating point number for example: "1" or
"3.1415".

NAVESPACE

The optional name of the namespace being defined for the specified
CLSASS. Thisfollows the same rules as NAME, with the exception that
NAMESPACE can be ablank string (""), or be unspecified.

Chapter 5: Introducing The Cobalt Configuration Engine 5-11
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Syntax: PROPERTY

A PROPERTY is a sub-element of a CLASS. A single PROPERTY defines a single datum. CLASSES
get their utility from their PROPERTY el ements.

H erment name: " PRCOPERTY"
Required attributes: "NAME', "TYPE'

pti onal

Requi red content:

pti onal

Valid Parents:

attributes: "DEFAULT', "CPTIONAL", "ARRAY', "READACL",
"WR TEACL"

none

none

Table5-6 PROPERTY Attributes

Attribute

Description

NAME

The name of the property. This must be a C-style symbol. See “ Syntax:
CLASS’ on page 5-10 syntax for the NAME attribute. All properties
beginning with an underscore () are reserved for future use.

TYPE

The data type of the property. This must be a valid TYPEDEF name. Type
bindings are resolved after all schemas are loaded, so you can use a

t ypedef beforeit isdefined. A PROPERTY with a TYPE that does not exist
will fail all data validation.

DEFAULT

The default value, used when the property is unassigned. This can be any
valuethat isvalid for the specified TYPE. If DEFAULT is unspecified, the
default value is an empty string ("), which might be valid for the
PRCPERTY.

CPTI ONAL

Whether the property can be the empty string (") in addition to avalid
datum. This can be any string or unspecified. If unspecified or assigned the
value"" or "0" (zero), the optional flag is set to false, otherwise, the optional
flag is set to true.

ARRAY

Whether the property is an array of the specified TYPE. This can be any
string or unspecified. If unspecified or assigned the value " or "0" (zero),
the array flag is set to false, otherwise, the array flag is set to true. When set
totrue, datafor this property is assumed to be an unbounded array of data, of
the type specified.

READACL and
WR TEACL

{{TIM FIXME}}

5-12

Chapter 5: Introducing The Cobalt Configuration Engine

Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Syntax: TY PEDEF

A TYPEDEF isamechanism to build on the basic data typing provided by CCE. A TYPEDEF isa

symbolic

Table 5-7

name given to adefinition of atype, and is used by a PROPERTY to validate its data.
E erent name: " TYPEDEF"

Required attributes: "NAMVE', "TYPE', "DATA"
ptional attributes: "ERRVBG
Requi red content: none
Valid content: none
Valid Parents: "SCHEMA'
TYPEDEF Attributes

Attribute

Definition

NAME

The symbolic name for the type. This must be a C-style symbol. See
“Syntax: CLASS’ on page 5-10 syntax for the NAME attribute.

TYPE

The validation class for the TYPEDEF. This must be either r e or ext er n.

DATA

The TY PE appropriate data validator. For r e TYPEs, it should beavalid
regular expression. For ext ern TYPES, it should be the path to an
external program. The program should read the data from standard input,
and return O if the datais valid, or non-zero if it isinvalid.

The error message returned by CCE when invalid dataiswritten to an
instance of this TYPEDEf . This can be any string, or unspecified.

Sample Schema Definition File

<SCHENVA

NAME=" Sanpl e Schena"
VENDCR="Cobal t Net wor ks"
VERS| ON=" 3. 1415" >

<l-- Sone cl asses, properties, nanespaces, and types -->
<CLASS name="Sanpl ed ass" versi on="12345">
<PRCPERTY name="nane" type="sanpl e_type" defaul t="new'/>

Chapter 5: Introducing The Cobalt Configuration Engine 5-13
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

</ CLASS>

<CLASS name="Sanpl ed ass" namespace="Deno" versi on="6.02e23">
<PRCPERTY name="nane" type="sanpl e_type" defaul t="123"/>
</ CLASS>

<TYPEDEF name="sanpl e_type" type="re" data="[A-Za-z0-9]*" />

<CLASS narne="Sanpl ed ass2" version="2.7183">
<PRCPERTY
name="nane"
type="f oo_t ype"
def aul t =" new'

optional ="1"

array=
readacl ="rul eAdm n" wri teacl ="rul eAdm n"

/>
</ CLASS>
<TYPEDEF

nane="f oo_t ype"

type="re" dat a="[A- Za- z0- 9] *"

errnmsg="Yow e! You can't do that with a foo_type!"
/>

</ SCHENMA>

5-14 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Handler Registration

The format of a CCE handler configuration file (conf) is very simple with two or three
whitespace-delimited fields per line, and one or more lines per file. Each line has the
following format:

event <whitespace> handl er <whitespace> stage

Any line that begins with a hash (#), or is blank isignored.

Events

The event field defines the circumstances upon which the handler is run. The event field
follows the form:

cl ass. property

This registers the specified handler to run whenever the specified class property is modified.
To register ahandler on an object’s creation or destruction, use the special properties CREATE
or _DESTROY. To register a handler on the modification of any property of aclass, usethe
special property * (asterisk).:

Table5-8 Valid Events

Event Condition

_CREATE When an object of the specified classis created.

_DESTROY When an object of the specified class is destroyed.

propertyname When the specified property of the specified class is modify.

* When any property of the specified classis modified.
Handlers

The handler field defines the type of handler, and the type-specific handler details. It hasthe
form:

type:details
The details of the handler depend on the type specified. The following types are avail able:

* exec, which executes the file named in the detail s field.

Chapter 5: Introducing The Cobalt Configuration Engine 5-15
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

¢ perl, which sendsthe Perl script named in the details field through a persistent Perl
process, for improved Perl performance.

¢ test, which sends the contents of the details field to the standard output of cced.

For exec and per| type handlers, which have a path name in the details field, some path
expansion is performed. If the detailsfield is arelative path (does not start witha /), the
default handler path / usr/ sausal i t o/ handl ers/ is prepended to the details field.

Stages

All handlers are run in one of several stages, and can thereby ensure some relative ordering.
The available stages are VALI DATE, CONFI GURE, EXECUTE, TEST, and CLEANUP. The stage field
isoptional, and if left off, is assumed to be EXECUTE. Since handlers within a stage are not
guaranteed to run in any specific order, asingle application can register multiple handlersin
each stage. Each stage's name suggests what it can be used for. The VALI DATE stage, for
example, should be used by handlers that do not make any changes, but instead verify that the
requested event can be performed.

Thefinal stage, CLEANUP, is meant for handlers which can not be undone. Handlers which
register for this stage must not exit with afailure status, or the system can be left in an
inconsistent and unrecoverable state.

File Naming

When searching for handler registration files, cced will do arecursive search of the handler
configuration directory. By default, this directory is/ usr/ sausal i t o/ conf , but can be
specified with the - ¢ option to cced, see “Command-Line Parameters’ on page 5-5. All files
that end with . conf are parsed as handler registration files. The only exception to thisis that
any file or directory that beginswith a dot (.) isignored.

Sample Handler Registration File

Register handlers for dass from Avendor
d ass. _CREATE exec:/opt/Avendor/d ass/ d ass_create configure
d ass. _DESTROY exec:/usr/sausalito/handl ers/d ass_destroy test

d ass. * exec: Avendor/ d ass/ d ass_nod

5-16

Chapter 5: Introducing The Cobalt Configuration Engine

Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Libraries

Perl

d ass.property perl:/usr/sausalito/bin/dass_prop.npl val i dat e

Libraries are a set of subroutines to handles details of accessing CCE via CSCP. These
librariesinsulate the users from the details of the CSCP protocol. These libraries are used both
in the construction of the new user clientsto the CCE server and to create handlers that extend
the functionality of the CCE system.

In order to simplify accessing CSCP easier, libraries have been written in several common
programming languages: C, Perl and PHP.

The CCE Library is meant to be used for all communications with the CCE library, that is,
communication from either user interface clients or from event handler clients.

The genera overview of CCE interaction from the point of view of aclient is primarily a
process of generating acommand or request (st ruct CscpLi ne), whichis passed to the CCE.
The results are then parsed into aresult (st ruct CscpResul t) and returned to the user.

All interaction is mediated through a GceConnect i on object that encapsulates the connection
to the CCE server and tracks the state of the connection.

This Perl library implements an object oriented interface for communicating with the Cobalt
Configuration Engine daemon (CCEd). The same interface is used for communicating with
the daemon both in the context of a management client and in the context of atriggered event
handler.

Synopsis
use CCE;
my $cce = new CCE;

Chapter 5: Introducing The Cobalt Configuration Engine 5-17
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

$cce->connectfd();

Developer Programming Interface

Creating A New Object

my $cce = new CCE;

Connecting to the Daemon

The CCE object supports two ways of connecting to the daemon. Thefirst isto open anew
Unix domain socket connection to the database:

$cce- >connect uds($fil enarre);

If $fi | enane isomitted, CCE instead attempts to connect to the default path:

[usr/sausal i t o/ cced. socket

In some cases such as in the case of an event handler, the connection to the CCE daemon
already exists. In these cases, an aternate devel oper programming interface existsto initialize
a CCE session over existing file descriptors:

$cce->connect fd($readfd, $witefd);

If $readf d or $wri t ef d are omitted, CCE connectsto\ * STDI Nand \ * STDOUT by defaullt,
which is the most common case for handler programs.

CSCP Libraries

This section providesinformation on CSCP libraries. For information on these commands, see
the CSCP appendix.

AUTH

$ok = $cce->aut h($usernane, $password);

Description: Authenticates a CCE connection between client and system

5-18 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Parameters
$ok indicates returns a boolean success flag.
See the CSCP appendix for information on 201 and 401 return values.

Create
($ok, $badkeys, @nfo) = $h->create($class, \%bject);

Description: Creates a new object of the specified class $cl ass, initialized using the
attributes specified in the %bj ect hash.

Parameters
$ok indicates whether the operation was successful.

$%badkeys is ahash of bad values, where the key is the name of attribute whose value was
rejected, and the value is the explanation of why that attribute was rejected.

@nf o isan array of additional messages returned by the operation, usually warnings.

$obj ect isareference to a hash that contains object data.

Destroy

($ok, @nfo) = $h->destroy($oid);
Description: Destroys the specified object.
Return Values
$ok indicates whether the operation was successful.

@nf o isalist of additional messages returned by the operation.

Set
($ok, $badkeys, @nfo) = $h->set($oi d, $nanespace, \%bject);

Description: Changes the attributes of an existing object.

Chapter 5: Introducing The Cobalt Configuration Engine 5-19
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Parameters

$oi d isthe numeric id of the object to modify.

$nanespace specifies which namespace of the object to operate on.
%bj ect isahash of attributes to change.

If namespace is omitted, the default main namespace (") is used instead.

Return Values
$ok indicates whether the operation was successful.

9%badkeys is ahash of bad values, where the key is the name of attribute whose value was
rejected, and the value is the explanation of why that attribute is rejected.

@nfoisalist of additional messages returned by the operation.

Get
($ok, $object, $old, $new) = $h->get($oid, $namespace);

NOTE: $oi d isalong 32-bit integer.

Description: Get isused to fetch all of the attributes of an object within a single namespace.
$oi d isthe numeric id of the object, and $namespace specifies which namespace of attributes
to fetch.

If namespace is omitted, the default main namespace (") will be used instead.

Return Values
$ok indicates whether the operation was successful.
9%obj ect isahash of the attributes of the object within the specified namespace.

9ol d isahash of the previous values of the attributes of the object within the specified
namespace.

9%newis ahash of only the attributes that have changed in the course of the current
transaction.

520 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

In the case of a management client communicating with the CCE daemon, the %obj ect and
ool d hashes are always identical, and the %%new hash is always empty.

When an event handler communicates with the CCE daemon, the %ol d contains the
attributes of the object before the start of the current transaction. %new contains only the
attributes that have changed in the current transaction. %cur r ent contains the most up-to-
date version of all attributes for the object.

Names
(ok, Snanelist, @nfo) = $h->nanes($oid);

Description: Returnsthelist of all valid namespaces associated with an object.%%new hashes
can be used to query the current and previous state of an object's attributes (as modified by the
current transaction). %cur r ent isthe concatenation of %ol d with 9%%new.

Nanes gets the attributes of an existing object. $oi d is the numeric identifier of the object,
and $nanespace specifies which attribute namespace to retrieve.

$ok indicates whether the operation was successful.
@nanel i st isalist of all valid namespaces.

@nf o isalist of additional messages returned by the operation.

Find
@i dlist = $h->find($class, \%riteria)

Description: Thefi nd function searches the database for al objects of class $cl ass with
attributes that match those specified in%rit eri a. For example: if the criteriais omitted, all
objects of the specified class are returned.

$systemoid) = $h->find(" System™);
$dougoid= $h->find("User", { 'name' => 'doug' });

@oidlist isalist of numeric object identifiers.

NOTE: moreinfo about FIND info from email exchangeto beincluded here

Chapter 5: Introducing The Cobalt Configuration Engine 5-21
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Bye
$ok = $h->bye($success, $msg)

Description: Says goodbye to the server and terminates the connection. For management
clients, $success and $nsg are meaningless. In the context of an event handler, $success
should contain either the strings success or fai | to indicate whether the handler succeeded
or failed. $nsg should then contain an arbitrary string used to elucidate the exit code.

$ok istrueif the bye command was successful.

Baddata
$ok = $h->baddata ($oid, $key, $val ue)

Description: Only used by event handlers: emits a message back to the server indicating that
the property $key of object $oi d wasinvalid for the reason specified in $val ue.

$ok istrue if the command is successful.

Info
$ok = $h->info ($msg)
Description: Sends an arbitrary message back to the server.

Warn

$ok = $h->info (@msg)

Description: Sends an arbitrary warning message back to the server.

Command-line (CceClient)

Cced i ent isthe equivalent of telnet for communication directly with the CCE server. The
user can issue CSCP commands to the server using thistool and get CSCP responses back.

NOTE: Exampleto be provided in afuturedraft

5-22

Chapter 5: Introducing The Cobalt Configuration Engine

Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

About CceClient

NOTE: Exampleto be provided in a futuredraft

Public Methods for CceClient (PHP)

function

function

function

Public methods for Cced i ent includefunction Cced i ent (), which isthe constructor
that returns a new object and creates anew Cced i ent handle. Other methods return
indicators of success or failure, or other values as specified.

You can use these methods to find, modify, create, destroy, and query objects.
Ccedient()
Description: constructor. This creates a new CceClient handle.
Example: $cce = new CceClient;

function aut h($user Nane, $passwor d)

Description: This method connects and authenticates the client to the server.

Parameters

user Name: user namein string

passwor d: password in string

Returns: f al se if failure, or anew session key if success.

aut hkey(S$user Nane, $sessionld)

Description: Authorizes using a session key instead of a password.
Returns: true if success, fal se if failure.

whoam ()

Description: This method should returnthe stri ng = user nane.

Chapter 5: Introducing The Cobalt Configuration Engine 5-23
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

function

function

function

function

function

function

function

function

bye()
Description: disconnect from server
endkey()

Description: This method releases current session key so that the session key can no longer
be used for authentication.

connect ($socketPath = "")
Description: connect to CCE

Returns: t rue if succeed, f al se otherwise.

Parameters

socket Pat h: the path of the Unix domain socket to CCE.
create($class, $vars = array())
Returns: boolean success

dest roy($oi d)

Returns: boolean success

errors()

Description: get the last error that occurred.

Returns: an array of CceError objects.
raw_errors()

Description: returns an array of hashes. Each hash contains information about a particular
error, include code, oi d, key, and message.

Returns: an array of error objectsin hashes.
find($class, $vars = array())
Description:

Returns:

5-24 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

function get(%$0id, $nanespace = "")

Description:

Returns: array of OIDs.
function i sConnected()

Returns: trueif the client is connected to the server, false otherwise.
functi on nanes($ar g)

Description: $ar g isan OID or class name.

Returns: list of namespace associated with one class or object.
function set(%$0id, $nanespace = "", $vars = array())

Returns: boolean success.
Example:

Make a schema

NOTE: Exampleto be provided in a future draft

Manipulate from hello_world

NOTE: Exampleto be provided in a future draft

CCE Constructors

CCE constructors verify theinitial state of system objectsat initial set up and verify their state
at each restart of the system.

Chapter 5: Introducing The Cobalt Configuration Engine 5-25
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Manipulate from hello_world

NOTE: to beincluded in later draft

5-26 Chapter 5: Introducing The Cobalt Configuration Engine
Beta Draft 9. Copyright © 2001. Cobalt Networks, Inc. All Rights Reserved.

Chapter 6

Making Sausalito-Aware Applications

Chapter Contents

Making Sausalito-Aware Applications

Making your Application into a Package
Introducing Slush Barn, an example application
How to Install your Package File on the Qube 3

Package Structure

Making Sausalito-Aware Applications

This chapter provides information on creating applications that run on the Qube 3. To create
an application, you must create a module that includes all the components needed and
structure it so that it can be easily installed by users, in a package file format (. pkg). This
chapter lists the fields that you need to include so that the Qube 3 can display the appropriate
information during the installation process. It also describes the appropriate directories, files,
and resources for your application module.

6—2

Chapter 6: Making Sausalito-Aware Applications

Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

About the Application Module

The application module is a self-contained bundle of files, directories, and resources required
for a new capability. Depending on the type of module you are creating, you choose the
appropriate level of integration. Some modules trigger both the user interface and the back
end system; others are stand alone modules.

New modules can contain any or all of the following code:

1. User Interface (UI) modules
¥ Ul pages built using UIFC

¥ Navigation nodes, such as adding buttons and menu items

The Web mail service that is displayed on the Cobalt menu is an example of a service that
is integrated only with the user interface and uses IMAP as its back-end system. The files
for the user interface go into the ui directory; for more information about module
directory layout, see Table 6—2 on page 6—S5.

2. Internationalization Modules

¥ Internationalization resources to translate the user interface into other languages.

3. Back-end modules
¥ CCE configuration files
¥ CCE handlers

Adding a user to the Qube 3 is an example of an instance that impacts only the back-end
modules, where the existing user interface is used and the CCE configuration files and
handlers are invoked.

4. Binary modules

¥ Service binaries and configuration files, for example, email modules have
SendMai | and Maj or dono binaries and modify the configuration files for these
binaries.

¥ Databases that register users as they are created and notify event handlers about
creating users. This type of module uses the existing user interface.

These modules can be manually installed and completely unintegrated to the Cobalt User
Interface (UI).

Chapter 6: Making Sausalito-Aware Applications 6—3
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Naming Your Application Module

Developers must use unique vendor-specific names for modules to avoid name conflicts.

NOTE: Cobalt uses base in its module names, for example,

base-devel . nod. Developers must differentiate their modules by naming
the modules with a distinctive name, preferably a name that reflects their
company or product, for example, vendor_name_module.

Building a New Service Module

A service module is a self-contained bundle of files or directories and resources required for a
new capability, for example, an ecommerce product or a system backup product. New
modules can contain any or all of the following:

¥ Navigation nodes servi ce. xni

User Interface (UI) pages built using UIFC servi ce. php
Internationalization resources servi ce. po

CCE configuration files servi ce. schems, servi ce. conf

CCE handlers servi ceMbd. pl , servi ceMd. ¢

K K K K K

Service binaries and configuration servi ced

NOTE: You can write handlers in any language. Cobalt provides bindings
for C and Perl.

Cobalt enabling tools include:
¥ Standard directory structure document; see Figure 6—7 on page 6—21.

¥ Build tools to create loadable module files (scripts and a Makefile)

6—4 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Making your Application into a Package

This section describes the skeleton module for Sausalito. By customizing the skeleton module
for your needs, you can integrate seamlessly into the Cobalt configuration environment.

To build a service module:

1. Create handlers to interact with the Cobalt Configuration Engine (CCE). A
configuration file goes in gl ue/ conf ; the actual handlers go in gl ue/ handl ers.

2. Create any user interface components, if necessary. These include web and menu page
descriptors, which go in the ui / web and ui / menu directories, respectively.

3. Write any | ocal e files; these go in the | ocal e directory.

4. Look att enpl at es/ spec. t npl andt enpl at es/ packi ng_list.tnpl.

NOTE: The default template to build RPM files is in

[usr/sausal i to/ devel / tenpl at es. If you want to modify these
templates, create a template directory in your module. Copy these files to
your template directory and modify them as needed.

5. Look at the top-level Makef i | e. Adjust the variables to fit your situation.

The default build targets are make al | , make cl ean, make install,and nake rpm

NOTE: A sample skeleton module is available in the Cobalt Developer web
page. Goto http://devel oper. cobal t.coni devnet/devtool s. ht m
for the code sample and Readme file.

Here’s some more information about the defaultmake rules and expected file names:

Table 6—1 The top-level Makef i | e variables

Makefile Variables Description

VENDOR the vendor field for your module

VENDORNAME the actual vendor name; this name can be the same as VENDOR
SERVICE the name for the service

VERSION version number

Chapter 6: Making Sausalito-Aware Applications 6—5
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Table 6—1 The top-level Makef i | e variables

Makefile Variables Description

RELEASE release number

BUILDARCH set to noar ch if you don’t want platform-specific RPMs generated.

XLOCALEPAT set to a space-separated list of locale patterns to exclude

BUILDUI packages all files in ui / web and ui / menu.

BUILDLOCALE set to yes to build these components, create RPMs, and create a
capstone RPM.

BUILDSRC build whatever is in the sr ¢ directory.

BUILDGLUE If BUI LDGLUE is set to yes, packages all the handlers, object schemas,

configuration files for event triggers, and conf files. If set to no,
BUI LDGLUE does no packaging.

DEFLOCALE This locale is used for static HTML pages, for example, en or j a.

The BUILD variables determine which directories to include when calling the cl ean,
i nstal |, and r pmtargets.

The default nake rules take the BUI LD? variables and build up ui , gl ue, and | ocal e RPMS,
if requested. If any of these RPMS are generated, a capstone RPM is created as well. A
capstone is a type of packing list for the RPMs.

Table 6—2 Module Directory Layout

Directories Description

constructor capstone constructors

destructor capstone destructors

glue handler and configuration modification code

ui user interface and user interface menu code

locale locale information and locale-specific UI pages

templates user-modifiable template files used in packing list and RPM
generation

src sr ¢ directory (optional)

RPMS RPMS directory (optional)

SRPMS source RPMS directory (optional)

6—6 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

The default make rules expect the following file layout:

1) gl ue/ conf/*

gl ue/ handl ers/ *
2) 1 ocal e/ | ocal eX/ $(SERVI CE) . po

3) ui / menu/ *

ui / web/ *

4)constructor/*

destructor/*

The default nmake rules place these files in the following locations:

gl ue/ conf/* -> $(CCEDI R)/ conf / $(VENDOR) / $(SERVI CE) / *
gl ue/ handl ers/* -> $(CCEDI R)/ handl er s/ $(VENDOR) / $(SERVI CE) / *

| ocal e/ | ocal eX/ $(SERVI CE) . po - >
/usr/sharel/l ocal e/ | ocal exX/ LC_MESSAGES/ $(VENDOR) - $(SERVI CE) . np

ui / menu/* -> $(CCEDI R)/ ui / menu/ $(VENDOR) / $(SERVI CE) / *
ui /web/* -> $(CCEDI R)/ ui / web/ $(VENDOR) / $(SERVI CE) / *

constructors/* $(CCEDI R)/ const ruct or/ $(VENDOR) / $(SERVI CE) /
destructors/ $(CCEDI R)/destructor/$(VENDOR) / $(SERVI CE) / *

If your module does not contain compiled code, the above nmake rules should be all that you
need for building a service module. Otherwise, you need to know about a couple additional

meke rules. First, make checks for Makefiles in the gl ue, src, and ui directories and uses

them, if they are present. You must prepend the PREFI X environment variable on the install
phase of the Makefile so that RPMs are properly generated.

In addition, the make r pmrule does not touch the sr ¢ directory, so you must create any
RPMs you want from separate specification files. t enpl at es/ packi ng_l i st. t npl should
be updated to reflect any of these RPMs without version numbers. You should create a file
with the same name as the RPM in the r pns directory to get the appropriate version included
in the packing list.

Finally, you might need to edit t enpl at es/ r pndef s. t npl to add additional build, install,
and file targets for any files that you have. The <begi n [$%4 VARI ABLE> sections in the
rpndef s. t npl file correspond to the same [VARI ABLE_SECTI ON] sections in

t enpl at es/ spec. t npl . If you want to add something to spec. t npl that isn’t dependent
upon a single RPM, then you can directly add it to spec. t npl .

Chapter 6: Making Sausalito-Aware Applications 6—7
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

NOTE: If you have a VENDORNAME specified, make searches first in
{glue, locale, ui, src}/$(VENDORNAME) for files before searching in
the gl ue, |ocal e, ui, and src directories.

Introducing Slush Barn, A Real-World Application

Here is an example of how to create a new Sausalito module. The goal of this example is to
manage of barn of animals using a UIFC-enabled front-end while updating an XML file on
the server. In this example, you will better understand how the pieces of the Sausalito
architecture work together to form a simplified means of creating web-based server
administration tools.

The files created in making this module are listed in below. Although many files are needed
for this module to work properly, each file is usually very short and serves its purpose. Details
on the syntax and contents of each file type are listed throughout this manual.

NOTE: These code modules are given the vendor-specific name sl ush so that
they are differentiated from Sausalito standard files. For a list of standard files,
see Appendix D, Base Data Types .

slush-barn.mod/Makefile
slush-barn.mod/glue/conf/barn.conf
slush-barn.mod/glue/handlers/Animal.pl
slush-barn.mod/glue/schemas/animal.schema
slush-barn.mod/glue/handlers/Animal.pl
slush-barn.mod/ui/menu/barn.xml
slush-barn.mod/ui/web/animal.php
slush-barn.mod/ui/web/animalHandler.php

slush-barn.mod/ui/web/slaughter.php

K K K K K K K K K K

slush-barn.mod/locale/en/animal.po

6—8

Chapter 6: Making Sausalito-Aware Applications

Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

The data types are registered with CCE using a t ypedef and a class tag within the XML file
ani mal . schema. The typedef called ani mal Type defines a new type that might contain
only the strings Pi g, Cow Hor se, and Chi cken. The class itself is called Bar nAni mal and
has two properties. The nane property refers to the given name of that particular barn animal,
and the t ype property is defined as being of type ani mal Type. Each time an addition is
made to our barn, a new instance of the class Bar nAni mal is created and it s properties are
filled with the data entered by the user.

Event handlers are also registered with CCE These event handlers are found within the

bar n. conf file. As defined, our handler (Ani mal . pl) is called upon any creation, change or
destruction of a Bar nAni mal instance. The handler in turn uses the data entered to create and
update an XML file called / et c/ bar n. conf, but any types of service configuration can
occur here. as the handler is run as root if triggered by the admni n user.

The logic to the user interface is very simple. A listing of all the currently known animals is
listed in the bar n. php file using a Scr ol | Li st type. This type allows for multiple columns
of data along with formatting rules making for a clear and distinct separation between the
logic and presentation of the user interface. The Modi f yBut t ons and the AddBut t on on this
page link to a page called ani mal . php, which is generic in that it allows for both the creation
and manipulation of animals within the barn. These actions are done in the page named

ani mal Handl er . php, which receives the POST of the ani mal . php page. To remove an
animal from the barn, the sl aught er . php page is called along with the O D of the object to
be deleted.

In order for our pages to be linked within our site, we need to create the XML tree node. This
file is called bar n. xm and contains information regarding that node. An ID is assigned to
every node of the tree as a reference point when creating parent-child relationships.

In this example, you can manipulate objects in a barn.

NOTE: No animals were harmed in the making of this application.

The new page is shown in Figure 6—1.

Chapter 6: Making Sausalito-Aware Applications 6—9
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Figure 6—1 Manipulating Barn Objects

@00 O

How to Install your Package File on the Qube 3

There are two ways that packages can be installed on Qube:
¥ manually

¥ update server

Both these ways provide information about the package, that is, package meta-information,
before the user installs the package. This meta-information includes fields with the package
name, vendor, description, license, and whether package dependencies exists; these fields are
described in Table 6—3 on page 6—12. This information is needed to properly display in the
Qube Ul details about the package before its installed. To provide this information, this
information is included in the package list and the package information directories for each
package.

Update servers alert you if they have new software for your Qube 3. When the Qube is alerted
that there is a new version of software for the Qube, the update server and Qube have the
following dialog:

1. The Qube 3 queries the server for information about new software. It provides details
about the Qube including the packages installs, Qube identification, and so forth.

2. The update server replies with list of available packages with associated information,
such as license and locale information. This informations corresponds to the
packi ng_| i st and the contents of the pkgi nf o directory.

6—10 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

3. Ifan | nf oURL field is specified, a popup window with the URL is displayed when you
go to the install detail page. If an | nf oURL field is not specified, a short description of
the package is displayed.

4. Installation can be selected.
The events around the manual installation are as follows:

1. The user on the Qube enters the package location through either browser upload, URL
download, or putting the file in / hone/ packages.

2. The Qube prepares the package for installation and displays the installation page. This
informations corresponds to the packi ng_I i st and the contents of the pkgi nf o
directory.

3. The contents of the installation page display a short description of the package that is
to be installed.

4. Installation can be selected.

Installation Process

The following stages occur in the installation process:

¥ If the package requires the server to reboot, the user is prompted to reboot the
machine.

¥ The install process looks first for a spl ash page If the spl ash page specifies the
pre-installation option, it will look for ani ndex. cgi ori ndex. php page to
call. It will pass in the following two variables a GET request to these files:
submiturl and cancel url .

NOTE: The spl ash page optionally specifies a pre-installation page, which
allows developer to create a custom page for the package including license
information. This page must be a CGI or PHP page that accepts GET requests.

¥ If the splash page doesn t exist and the license field does, BlueLinQ will present a
standard license page containing the value of the license field.

¥ Once the user accepts the license (if there is a license), BlueLinQ checks package
dependencies, and halts if there is a dependency error. If not, BlueLinQ runs the pre-
installation scripts, install RPMS, and then runs the post-installation script. The scripts
are located in the scri pt s directory of the package.

Chapter 6: Making Sausalito-Aware Applications 6—I11
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

NOTE: BlueLinQ will install an RPM only if it is newer than any existing
RPMSs. If there is an existing RPM on the server, BlueLinQ increments the
reference count each time you add a package with a RPM referenced in it.
When you uninstall a package, the reference count is reduced. If the reference
count for a package is less than one, BlueLinQ deletes the RPM.

Choices for the Installation Process

You can customize your installation. You can change the look and feel of install by opting to
include:

¥ aninfoURL field
¥ asplash page
¥ a generic license

The splash page must be a CGI or PHP file. The update process calls this CGI with the
following URL variables set: subni t URL and cancel URL.

Package Structure

The package file format is a t ar . gz file. When you install a package file, BlueLinQ check
for the following items:

¥ whether the file is at ar file or a compressed t ar file
¥ whether the file is signed
In packages for earlier Cobalt products, package files had the following elements:
¥ packing_list
¥ RPMs
¥ SRPMs

¥ install _ne script

Packages for earlier Cobalt products had scripts that performed all installation tasks. Package
dependency checking was done by the package itself. New packages have scripts that runs at
specified times.The scripts deal with the following issues:

6—12 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

¥ pre-installation
¥ post-installation
¥ pre-uninstallation

¥ post-uninstallation

BlueLinQ runs these scripts as part of the installation. Package dependencies are based on
vendor name, version number and package name. You can evaluate version number to
determine if they are equal, less than, or greater than the target version. Sausalito currently
checks a three-part field, for example, 1.0 or 1.1.2.

The new packing list format includes the following elements as shown in Table 6—3.

NOTE: All the information in the package list format is case-sensitive.

Table 6—3 Package List Format

Component Description

[Package -- Version=1.0]

Vendor vendor name can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

Vendor Tag internationalizable vendor string

Narme packagename can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

NanmeTag: internationalizable package name string.

Cat egory category information can include alphabetical characters,
numbers, underscore (_), and the plus sign (+). Spaces and
hyphens (-) are not permitted.

Location URL that specifies the package download location

I nf oURL additional information URL. Optional. Use this if you want to
display a new site (as opposed to installing a package).

I nf 0URL options options that should be sent with to the URL, which can include
serial number, product identifier (product), and vendor name
(name).

Ver si on version of the package

Ver si on Tag Internationalizable version number.

Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

6—13

Table 6—3 Package List Format

Component Description
Si ze size in bytes (only used by the update server.)
Product : Cobalt product requirements: for example, 4100WG or 4nnnWG.

NOTE: use this field to specify as
many products as you are
including. Include one line for
each package. You can use a
regular expression to specify
products, for example:

NOTE: 4000WG is the product number for the basic Qube 3.

4010WG is the product number for the Qube 3 with caching;
4100WG is the product number for the Qube 3 with caching and
mirroring.

(4000]4010|4100) WG.

PackageType specify conpl et e or updat e

Opti ons uni nstal | abl e, reboot, refreshui, refreshcce
LongDesc internationalizable long description

Short Desc internationalizable short description

Copyri ght: internationalizable copyright string

Li cense internationalizable license information. Optional

Spl ash pre-install, post-install, pre-uninstall, post-uninstall

Depend package dependencies. for example, vendor : package. The

NOTE: Each dependency must be
on its own line. See Package
Dependency Model on

page 6—15 for more information.

package won’t show up in the new or updates pages if these
dependencies aren’t met. Here’s what’s expected:

vendor : package vendor-package must exist.
vendor : package ! vendor-package must not exist.

vendor : package <=> ver si on vendor-package is less
than, equal to, or greater than the specified version number.

vendor : package ! = versi on vendor-package not equal
to version.

Vi si bl eDepend

NOTE: Each dependency must be
on its own line. See Package
Dependency Model on

page 6—15 for more information.

just like Depend except that the package will show up in the new
or updates lists even if dependencies aren’t met.

(bsol et es

NOTE: Each obsoletes must be on
its own line. See Package
Dependency Model on

page 6—15 for more information.

obsoletes vendor-packages

format:

vendor : package

vendor : package <=> version

6—14 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Table 6—3 Package List Format

Component Description
RPM used only by the actual package
SRPM used only by the actual package

NOTE: Internationalized strings are in the following format: [[vendor]] . If
you are specifying strings within the pkgi nf o locale directory, then do not
specify a domain. Sausalito specifies the domain for you. pkgi nf o locale
strings cannot include locale tags within locale tags. You can include locale
tags that refer to other domains.

Package files have the following structures. Figure 6—2 shows the package file structure.
Figure 6—2 Package File Structure
—— packing_list

L pkginfo E‘j
Dt
SCHPES —pre-install "\Kl

—post-install '::1

—pre-uninstall m
—post-uninstall h

——RPMS [":3 :

——SRPMS [:3

See Module File Hierarchy on page 6—21 for a more complete file hierarchy.

Chapter 6: Making Sausalito-Aware Applications 6—15
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

NOTE: The packi ng_| i st format for packages is very similar to the package
part of the package_| i st update server packing list. You can use them
interchangeably with the caveat that some fields are unused. For example, the
update server information uses the si ze field. The packing list uses RPM,
SRPM, and fi | eNane.

The following features are only used by software update notification mechanism (BlueLinQ):
¥ Size (inbytes)
¥ InfoURL
¥ Location

¥ PackageType

The following fields are only used by actual package installation mechanism:
¥ RPM
¥ SRPM

¥ Options

Package Dependency Model

The dependency model allows you to restrict packages to particular Cobalt products, for
example, the Qube 3. You can also include dependencies on other software packages. Finally,
you can declare old packages obsolete.

The format for dependency requires that each dependency is on a separate line with a label
denoting the type of dependency. Sausalito offers three types of dependency information:

¥ Product: Cobalt Product Dependency such that the package will install if other
software products that are needed are not already installed. These are checked by
product ID, for example 4000WG. You can use a specific product, particular version,
or you can use a Perl regular expression here.

¥ Package dependencies:

¥ Depend: Normal package dependency based on the version number being less
than (<), equal to (=), or greater than (>) the version number specified.

6—16 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

¥ Visibl eDepend: Visible dependency: same as Depend but is only useful for the
software update mechanism. The packages that do not meet dependencies behave
identically to the Depend in all other manners to new or update packages despite
the fact that the package can t be installed.

¥ bsol etes: Obsoletes packages name or name and optional version, less than (<),
equal to (=), or greater than (>) the version number specified, which removes
information about other packages of that name or version number specified.

Information for Installing Stand-alone Packages

The following are used in the actual package installation process but not in update server-
supplied information. They are not used for the update server pkgi nf o.

¥ RPM
¥ SrPM
¥ Options (in a comma-separated list) include:
¥ reboot
¥ refreshui
¥ refreshcce
¥ uninstallable

These fields are used to provide information and are included in the actual package as well as
provided by the update servers:

¥ Package identification
¥ Name and nanet ag
¥ Version and versionTag
¥ Vendor and vendor Tag
¥ Description
¥ shortDesc
¥ | ongDesc
¥ License information
¥ License
¥ Splash

Chapter 6: Making Sausalito-Aware Applications 6—17
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

¥ Category

These fields are found only in update server package:
¥ Size (in bytes)
¥ PackageType: conpl et e or updat e
¥ Location
¥

I nf oURL: a pop-up window appears when the user clicks the magnifying glass

Figure 6—3 New Software Installed

v + 3 & 2 @ a9 S & O3 W

Back r Falgad Hovwe Saarch Helicaps Frint Sscorily Shop Sinp

Location: 8 i fimasn 151 cobiH com 448 S fel o8 php Freaker ool | @ wuat's Rovtate

Bovecene e e Brwe Breww Brorwroges Bowness Bcitw Bwwrva &coanmawes 5o

Up sl ma
Inslaled 5olbware
Sellinga

Ires Gl

[§= & arsion - Vanckr - "
v mi " AN F VEnG F LS iy Dty
D GuaeiTeadPlgd 1.0 Cabult Cubal Va4 Q..
O Al 4.3 Knme s 9 2 s pli e daba profechiaen by provd dineg okt ed q

SEEE i b i d ey

6—18 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

If you click on the magnifying glass, you see the information shown in Figure 6—4, which
corresponds to the information in Table 6—3 on page 6—12.

Figure 6—4 New Software Installation Details

C OB A

LT
u

L= I

Updiates
Inakullad Seallware

Mame

ubedTestFigd
Y eraian Lo

Seltngs ¥ evdid Cicbah
Copdghl STl

(i smrnphr Chubed Tast 4
Lencsit o hitp Marinian | sosell romiquse Seample plg
Sz) o3

Ui lndatds Ho

e pred el Pk e o Cebal 08 = &0

Software Update Server

NOTE: Ifthe i nf oURL file exists, it displays a popup window and will not
install the actual package.

The BlueLinQ tab on the Qube 3 has an Updates menu. This page lists available software
with the following information.

¥ Update server-provided information (name, vendor, locale, description)
¥ Pop-up information. | nf oURL displays the URL to be passed the Qube s serial number

¥ The package checks for an | nf oURL. If one exists, the page referenced by the
I nf oURL appears. If not, the package presents the license information, and installs
after the user accepts the license agreement.

When users click on Install Details, the Qube 3:

¥ Displays the splash page if there is one or displays a license agreement in standardized
license format.

¥ Begins installation

Chapter 6: Making Sausalito-Aware Applications 6—19
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

When the user begins installation, these events occur on the Qube 3:

¥ Tt checks for a signature and attempts to authenticate it, if one is present. If the
signature cannot be authenticated, a message is displayed letting the user know that the
signature check failed.

It runs the pre-installation script.

It installs the RPMs.

K K K

It runs the post-installation scripts.

¥ Tt reboots or refreshes, if those options are set.

Figure 6—5 shows the Update Server page.
Figure 6—5 Update Software Installed

COoO A LT

H T W O 8 R &

Iriakalled Salbwers
Settings W_

w hame gy Vesonos venco Diesoipion
b CmibedTestPegs: 1.3 Cobak Cribed Tesl 3

oF Ll pedal e | 0 bl Lpall LIS Ui padate

res bl
e
‘ 9
O oS pdate T Cobsl Coball 05 Update Q
Q
Q

¥ pelate 14 Cobel This pescicapes moanaposlsfor Cobalt 05

6—20 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

If you click on the magnifying glass, you see the information shown in Figure 6—6, shown in
Figure 6—4, which corresponds to the information in Table 6—3 on page 6—12.

Figure 6—6 Update Software Installation Details

OB A LT

oE T WO B o

Héw 5 oldlwire

P ritee 3 Tes i3
InsAaled 5eflware TP L®
Heltinga ¢ A Cofpall

mpymght FOpIEht

sl plian Crabe3 Test 3

Ll n hip - Fadrian | enbalf comigyube 3 saraple g

S MH) 0. 183

rarcsinlabie Ha
s pesmmi il Pascdom sy Ciopalt COIF = &0

Development Details

Modules expect the following auxiliary support from Sausalito development tools:
¥ SAUSALI TO devel / modul e. nk for all the Makef i | e rules.
¥ SAUSALI TQ bi n/ mod_r pni ze for the r pm spec file generator.

Chapter 6: Making Sausalito-Aware Applications 6—21

Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

Figure 6—7 Module File Hierarchy

I Makefile [«:3
Constructor
_l—serviceConstructor.pl

Destructor

|___serviceDestructor.pl

glue 7
am 3
service.conf

conf ‘:“1
service.conf

—|—_handlers iy
addservice.pl

delservice.pl

modservice.pl

schemas '},
sevice.schema

locale :‘1
|_en ;1‘
|— service.po

SI'C H:L

| Makefile
ServiceHelper (7}
— Makefile
—— serviceHelper.c
— serviceHelper.h

—— serviceHelper.sh
v Continued on next page.

6—22 Chapter 6: Making Sausalito-Aware Applications
Beta Draft 9. Copyright ' 2000. Cobalt Networks, Inc. All Rights Reserved.

templates hj,

packing.list.tmpl
—— rpmdefs.tmpl
spec.tmpl

ui »:.1)
|__menu L}
serviceRoot.xml
serviceAdmin.xml
serviceUser.xml

web L,

serviceSettings.php
serviceSettingsHandlers.php

Appendix A

User Interface Foundation Classes

This appendix is a complete reference for al User Interface Foundation Classes (UIFC). The
UIFC isacomprehensive set of class libraries for Cobalt's user interface components. Their
functionsinclude generation of HTML code for rendering and JavaScript code for error
checking. “Utility Classes’ on page B—1 describes classes that work in conjunction with the
UIFC classes.

To use UIFC, you should have some basic knowledge about object-oriented design and
programming as well as PHP, because UIFC is object-oriented and implemented in PHP.

The UIFC were designed to provide both user interface consistency and flexibility.
H m Conponent Fact ory isthefirst class you should look at. It is afactory that constructs
UIFC class in the most commonly used way. See “HTMLComponent” on page A—22.

Each UIFC class is listed in this appendix in alphabetical order.

HTML Generation

UIFC contains classes of visual components. The classes have methods to generate the look
and feel in HTML. For example, the | pAddr ess class generates HTML code that represents
an |P address data type. In this way, a change in look and feel of avisual component within
the whole user interface can be accomplished by modifying just one class.

Error Checking

Form fields in UIFC support the plug-in of JavaScript error checking code. Thisfeatureis
useful for checking and reporting errors interactively. Not all form fields require error
checking because their input set might be limited to valid data. For more information of error
handling, see “Error” on page B-3.

A—2 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Reusable Code

The class hierarchy of UIFC isdesigned to bereusable. It is easy to subclassa UIFC classand
make a more specific visual component, for example: aclass B |P address, can be made by
subclassing the | pAddr ess class. For nFi el dBui | der also generatesHTML code.

Common Pitfalls

There are several things to avoid when using UIFC:

¥ The UIFC encompass many functions. You must pay special attention in extending
UIFC classes to add new functionality. New functionality can introduce
inconsistencies if the functionality does not occur in the existing user interface.

¥ Because UIFC is written in PHP and PHP does not have good support for object-
oriented programing, UIFC users can directly refer to private variables and methods of
UIFC classes. For good programming practice, do not do this because these functions
could change in the future.

¥ Do not use UIFC to format free-flow text paragraphs. Pure HTML provides more
formatting capabilities than UIFC. You can put HTML inside UIFC pages.

¥ Thet oHeader Ht ni () method of Page object outputs HTTP headers. Do not print
anything before this method. As a common PHP catch, blank lines are printed. The
following code provides a warning because there is a blank line above the method:

<?php
?>

<?php
print ($page- >t oHeaderH m ());
?>
¥ Because PHP is interpreted and is basically typeless, it is very easy to pass in

parameters of wrong types to functions or methods. This can generate runtime errors
from UIFC classes that your code does not use directly.

Appendix A: User Interface Foundation Classes A—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

AddButton

function

BackButton

This class creates a labeled but t on. The application causes an Add item action when the
button is clicked.

Extends:

The class AddBut t on extends But t on.

Implements:
The cl ass but t on implements HTM_Conponent , St yl i sh, and Col | at abl e.

See also:

AddBut t on, BackButton, Cancel Buton, Detail Button, RenpveButton,
SaveButton

Public Methods

AddBut t on($page, S$acti on)
Description: constructor

Returns:

none

Parameters
page: the Page object in which this object resides

acti on: the string used within HREF attribute of the Atag

This class creates a labeled Back button. The application causes a Back action when the
button is clicked.

A—4 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Extends:

The class BackBut t on extends But t on.
Implements:

The cl ass but t on implements HTM_Conponent , St yl i sh, and Col | at abl e.

See also:

AddBut t on, BackButton, Cancel Buton RenpveButton, SaveButton

Public Methods
Description: constructor

functi on BackButton($page, $action)

Parameters
acti on: the string used within HREF attribute of the Atag

page: the Page object in which this object resides

Bar

This class creates a vertical bar on the page.
Extends:

class Bar extends For nFi el d.

Implements:

HTM_Conponent, Coll atable, Stylish

See also:

For nFi el d

Appendix A: User Interface Foundation Classes A—5
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

Button

function

Public Methods

get Label ()

Returns: a label in string

function setLabel($label)

Description: set label to replace the percentage shown by default
Parameters

| abel : alabel in string

set Vertical ()

Description: set bar to type vertical

This class creates a labeled but t on. The application causes a specified action when the
button is clicked.

Extends:

Ht m Conponent

Implements:

The cl ass but t on implements HTM_Conponent , St yl i sh, and Col | at abl e.

See also:

AddBut t on, BackButton, Cancel Buton, Detail Button, RenoveButton,
Mul ti Button, SaveButton

Public Methods
Button($page, $action, $label, $label Disabled = "")

Description: Constructor

A—6

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

functi

functi

functi

functi
functi
functi

functi

on

on

on

on

on

on

on

Parameters

page: the Page object in which this object lives

acti on: the string used within HREF attribute of the A tag
| abel : a Label object for the normal state

| abel Di sabl ed: a Label object for the disabled state. Optional. If it is not supplied, it is the
same as the label parameter.

get Action()

Description: get the action to perform when the button is pressed
Returns: an action

set Acti on($acti on)

Description: set the action to perform when the button is pressed
i sDi sabl ed()

Return: $i sDi sabl ed

Parameters

di sabl ed: true if the button is disabled; false otherwise

set Di sabl ed($i sDi sabl ed)

get Label ()
get Label Di sabl ed()
set Label ($l abel , $| abel Disabled = "")

Description: set the label for the button

Parameters
| abel : label object for the normal state

| abel Di sabl ed: a label object for the disabled state. Optional. If not supplied, it is the same
as the label parameter.

Appendix A: User Interface Foundation Classes A—T7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

toH m ($style = "")

Returns: $style, $page

CancelButton

function

class Cancel But t on extends But t on.
Description: constructor

This class creates a cancelbutton. The application causes an action to be cancelled when the
button is clicked.

Extends:

none

Implements:

The cl ass but t on implements HTM_.Conponent , styl i sh, and col | at abl e.
See also:

AddButton, BackButton, CancelButon, DetailButton, RemoveButton, SaveButton
Public Methods

Cancel Butt on($page, $acti on)

Parameters

page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

CompositeFormField

The class Conposi t eFor nFi el d extends For nFi el d.

A—8 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Public Methods
function ConpositeFornField()
Description: constructor
function getDeliniter()
Description: get the delimiter to separate form fields
function setDelimter($deliniter)
Description: set the delimiter to separate form fields
Parameters
del i mi ter: adelimiter in string
function get FornFi el ds()
Description: get form fields added to this object

Returns: an array of FormField objects
functi on addFor nFi el d($f or nFi el d)

Description: add a form field to this object

Parameter
f or nFi el d: a FormField object

Returns: nothing

CountryName
The class Count r yNane extends For nFi el d.

Public Methods
function CountryNane($page, $id, $val ue)

Description: constructor

Appendix A: User Interface Foundation Classes A—9
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters
page: the Page object this form field lives in
i d: the identifier of this object

val ue: the group of country names defined in ISO 3166

DetailButton

function

This class creates a Det ai | But t on. The application causes a Det ai | But t on action when
the button is clicked.

Extends:

The class Det ai | But t on extends But t on.

Implements:

The cl ass but t on implements HTM_Conponent , St yl i sh, and Col | at abl e.

See also:

AddBut t on, BackButton, Cancel Button, Detail Button, ModfiyButton,
RenoveBut t on, SaveButton

Public Methods

Det ai | But t on($page, $acti on)
Description: constructor

Parameters:

page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

A—10

Beta Draft 9. Copyright '

Appendix A: User Interface Foundation Classes
2001. Cobalt Networks, Inc. All Rights Reserved

DomainName

The class Dormai nNane extends For nFi el d.

DomainNamelList

The class Dormai nNaneLi st extends For nFi el d.

EmailAddress

The class Emai | Addr ess extends For nFi el d.

EmailAddressList

function

function

The class Enmi | Addr essLi st extends For nFi el d.

Public Methods

Emai | Addr essLi st ($page, $id, $val ue, $invalidMessage,
$enpt yMessage)

Description: superclass constructor
setlnport($on, $javascriptFunction = "")

Description: set the import feature of the list so that email addresses can be imported from the
address book

Parameters:
on: true to enable import, false to disable

javascri pt Funct i on: JavaScript code that is being run during import

Appendix A: User Interface Foundation Classes A—11
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

FileUpLoad

function

function

set Format ($format = "BLOCK")

Parameters:

Format to have the Emai | Addr essLi st show up in either BLOCK mode in which email
addresses are one per line using a Text Bl ock field or in a S| NGLELI NE mode where multiple
email addresses can be entered comma-separated in a Fi r st Last nanme <abc@bc. net >
format. Using SI NGLELI NE returns the email addresses only in the $i d variable as done in
the BLOCK mode, but also returns the unformatted data in the $i d_f ul | variable.

The class Fi | eUpl oad extends For nFi el d.

Public methods

Fi | eUpl oad($page, $id, $value, $maxFileSize = "",
$i nval i dMessage, $enptyMessage = "")

Description: constructor

Parameters

page: the Page object this form field lives in

i d: the identifier of this object

val ue: the path

nmexFi | eSi ze: the maximum file size allowed to upload in bytes. Optional
i nval i dMessage: the message to be shown upon invalid input. Optional

enpt yMessage: the message to be shown upon empty input if the field is not optional. This
message is optional.

set MaxFi | eSi ze($naxFi | eSi ze)

Description: set the maximum file size allowed to upload

A—12 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters

maxFi | eSi ze: bytes in integer

Form

This class represents a HTML f or m

Applicability

This class is used where a HTML form is needed.

Usage

Each Page contains a For mobject that is accessible by the get For n() method of the Page
object. Form objects have get | d() methods to get its ID, which is used as the NAME
attribute of the HTML FORM tag. Each form has a JavaScript onsubmi t () handler
associated with it. Because JavaScript function f or m subni t () does not call the

onsubni t () handler; you must explicitly call onsubni t () if you submit the form through
JavaScript. If no action is supplied, environment variable REQUEST_URI is used as action.
Otherwise, JavaScript variable i sAct i onAvai | abl e for the Form object is set to true.

Public Methods
function Forn($page, $action = "")

Description: constructor

Parameters
page: the Page object this object lives in

act i on: the ACTION attribute of the FORM tag. Optional. If not supplied, it is set to
environment variable REQUEST_URI

function getAction()

Description: get the ACTION attribute

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—13

function

function

function

function

function

Parameters

acti on: the acti on attribute of the FORM tag
Also see: set Acti on()

set Acti on($acti on)

Description: set the ACTI ON attribute

Parameters

act i on: the ACTI ON attribute of the FORMtag

Also see: get Acti on()

get Target ()

Description: get the t ar get attribute

Returns: the t ar get attribute of the f or mtag

Also see: set Tar get ()

set Tar get ($t ar get)

Description: set the t ar get attribute

Returns: the t ar get attribute of the f or mtag

Also see: get Tar get ()

getld()

Description: get the ID of the form. It is also the NAME attribute
Returns: a string

Also see: setld()

set 1 d($id)

Description: set the ID of the form. It is also the NAME attribute
Returns: a string

Also see: getld()

A—14 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function get Subm t Action()
Description: get the form action that is used to submit the form
Returns: a string

function $handl er Nane()

function toFooterH ml ($style = "")

Description: translate the footer of the form into HTML representation

Parameters

st yl e: a Style object that defines the style of the representation. Optional. If not supplied, the
default style is used.

Returns: HTML in string.

FormField

The class For nFi el d extends Ht il Conponent .

NOTE: You can not put HTML into FormField values.

Public Methods

function FornFi el d($page, $id, $value = "", S$invalidvessage = "",
$enpt yMessage = "")

Description: constructor

Parameters

page: a Page object in which this form field resides

i d: the identifier of this form field. Used in the NAME attribute of input fields

val ue: the default value of this form field. Depending on what this form field is, the value
can be different

Appendix A: User Interface Foundation Classes A—15
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

functi on

function

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

get Access()

Description: get the access property
Returns: a string

Also see: set Access()

set Access($access)

Description: set the access property

Parameter

Access can be "" for hidden, "r" for read-only, "w" for write-only and "rw" for both read and
write.

Returns: true if succeed, false if failed

Also see: get Access()

get Col | at abl eVal ue()

get Enpt yMessage()

Description: set the message to display when the form field is empty while it should not
Parameter

emptyMessage: a string

Also see: set Enpt yMessage()

set Enpt yMessage($enpt yMessage)

Description: set the message to display when the form field is empty while it should not
Parameter

enpt yMessage: a string

Also see: set Enpt yMessage()

A—16

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

function

getld()

Description: set the unique ID of the form field. It is used to identify the form field when the
form containing the field is submitted, this ID is a variable name in the submit only

alphanumeric characters and underscores are supported

set 1 d($id)

Parameter
i d: astring
get I nval i dMessage()

Description: set the message to display when the form field is invalid

Parameter
i nval i dMessage: a string
set I nval i dMessage($i nval i dMessage)

Description: set the message to display when the form field is invalid

Parameter

i nval i dMessage: a string

Also see: get | nval i dMessage()

i sOptional ()

Description: get the optional flag

Returns: true if this form field is optional, false otherwise
Also see: set Opti onal ()

set Opti onal ($optional)

Description: set the optional flag; it indicates if the form field can be empty.

Parameters

opti onal : true if the field is optional, false otherwise

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright '

2001. Cobalt Networks, Inc. All Rights Reserved

A—17

function

function

Also see: setOptional()
get Val ue()

Description: get the value

Returns: the value of different types depending on which concrete subclass of form field this

1S
Also see: set Val ue()

set Val ue($val ue)

Description: set the value; depending on the concrete type of the form field (e.g.,

| pAddr ess); this value can be of different type.

Parameters
val ue: any variable

Also see: get Val ue()

FormFieldBuilder

function

This class helps to build form field components.

Applicability
Any form field can use this class to build components.

Public methods

makeCheckboxFi el d($i d, $val ue, $access,
$onClick = "")

Description: make a checkbox field
Parameters

i d: the identifier of the field

val ue: the value of the HTML input field

$checked,

A—18

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
checked: if it has a value checked, false otherwise

ond i ck: the onClick attribute of the field

Returns: HTML that represents the field

nmakeFi | eUpl oadFi el d($i d, $access, $size, $naxlLength,
$onChange)

Description: make a file upload field

Parameters

i d: the identifier of the field

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
si ze: the length of the field

maxLengt h: maximum number of characters that can be entered into the field
onChange: the onChange attribute of the field

Returns: HTML that represents the field

makeHi ddenFi el d($id, $value = "")

Description: make a hidden field

Parameters

i d: the identifier of the field

val ue: the value of the HTML input field
Returns: HTML that represents the field

makeJavaScri pt ($f or nFi el d, $changeHandl er,
$submi t Handl er)

Description: make javascript for form fields

Appendix A: User Interface Foundation Classes A—19
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters

f or nFi el d: the form field to generate javascript for

changeHand! er : the JavaScript function that is called when the form field change
submi t Handl er : the JavaScript function that is called when the form field submits
Returns: HTML that represents the field

functi on nmakePasswor dFi el d($i d, $val ue, $access, $si ze,
$onChange)

Description: make a password field
i d: the identifier of the field
access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
si ze: the length of the field
onChange: the onChange attribute of the field
Ret ur ns: HTML that represents the field
functi on makeRadi oFi el d($i d, $val ue, $access, $checked)
Description: make a radio field
i d: the identifier of the field
val ue: the value of the HTML input field

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
parameters checked: true if it is checked, false otherwise

Returns: HTML that represents the field

functi on makeSel ect Fi el d($id, $access, $size, $wi dth,
$isMultiple, $formd, $onChange = "", $labels = array(),
$val ues = array(), $selectedl ndexes = array())

Description: make a select field

Parameters

id: the identifier of the field

A—20

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
si ze: the SIZE attribute of the HTML SELECT tag

wi dt h: the minimum width. Select field width is static in Netscape, dynamic in IE

i sMul ti pl e: true if multiple items can be selected, false otherwise

f or m d: the ID of the form this field lives in

onChange: the onChange attribute of the field. Optional.

| abel s: an array of labels in string. Optional. Must have same length with values

val ues: an array of values in string. Optional. Must have same length with labels

sel ect edl ndexes: an array of indexes of labels for the selected

Returns: HTML that represents the field

makeText Fi el d($i d, $val ue, $access, $size, $maxLength,
$onChange)

Description: make a text field

Parameters

i d: the identifier of the field

val ue: the value of the HTML input field

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
si ze: the length of the field

maxLengt h: maximum number of characters that can be entered into the field
onChange: the onChange attribute of the field

Returns: HTML that represents the field

makeText Ar eaFi el d($i d, $val ue, $access, $rows, $col umms,
$onChange, $wap = "")

Description: make a text area field

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—21

function

FullName

Parameters
i d: the identifier of the field

val ue: the value of the HTML input field

access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write

r ows: the number of rows

col umms: the number of columns

onChange: the onChange attribute of the field
Returns: HTML that represents the field

makeText Li st Fi el d($i d, $val ues, $access,
$col ums)

Description: make a text list field

Parameters
i d: the identifier of the field

val ues: an array of values in string

access: "" for hidden, "r" for read-only, "w" for write-only and "

form d: the identifier of the form this field lives in
rows: the number of rows
col unms: the number of columns

Returns: HTML that represents the field

The class Ful | Nane extends For nFi el d.

$form d, $rows,

rw" for read and write

A—22 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

GroupName

The class Gr oupNane extends For nfi el d.

HTMLComponent

The class Ht nl Conponent extends St yl i sh.

Implements
This class implements Col | at abl e.
Description: constructor

function H nm Conponent ($page)

Parameters

page: the Page object in which this HTM_LConponent resides.
functi on set Page($page)

Description: set Page object in which this HTM_Conponent resides.

Parameters

page: a Page object
function toH nl ($style = "")

Description: translate into a HTML representation

Parameters

st yl e: the style of the representation in a Style object

Returns: HTML

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—23

ImageButto

function

Imagelabel

function

function

n

class | mageBut t on extends But t on.

Public methods

| mageBut t on($page, $action, $inmage, $l bl, $desc)

Description: constructor

Parameters

page: the Page object this object lives in

act i on: the string used within HREF attribute of the Atag

The class | mageLabel extends Label.

Public Methods
| mageLabel ($page, $i mage, $l abel,

Description: constructor

Parameters

page: the Page object this object lives in
image: an URL of an image

label: a label string

description: a description string

get | mage()

Description: get the image used as the label

$description = "")

Returns: an URL of an image function set | mage($i mage)

A—24

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

IntRange

function

function

functi on

set | mage($i nage)
Description: set the image used as the label
Parameters

i mage: an URL of an image

set | mage($i nage)

The class | nt Range extends For nFi el d.

Public Methods

| nt Range($page, S$stylist, $id, $val ue,

$enpt yMessage = "")

Description: constructor

Parameters

page: the Page object this form field lives in
styli st: a Stylist object that defines the style
i d: the identifier of this object

val ue: the default value

$i nval i dMessage,

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This

message is optional.
i sConfirm))
Description: superclass constructor

set Confirm $isConfirm

Description: set the config flag

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—25

function

Integer
function
function

Parameter

i sConfirm if true, a confirm field is shown
set Confirm $i sConfirm
Description: set the config flag
Parameter

i sConfi r m if true, a confirm field is shown

The class | nt eger extends For nFi el d.

Public Methods

| nt eger ($page, $stylist, $id, $val ue,

$enpt yMessage = "")

Description: constructor

Parameters

page: the Page object this form field lives in
styli st: a Stylist object that defines the style
i d: the identifier of this object

val ue: the default value

$i nval i dMessage,

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input, if the field is not optional. This

message is optional.
get Max()
Description: get the maximum valid value

Returns: an integer

A—26 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Also see: set Max()
function set Max($nmax)
Description: set the maximum valid value
Returns: an integer
Also see: get Max()
function getM n()
Description: get the minimum valid value
Returns: an integer
Also see: set Mai n()
function setM n($m n)
Description: set the minimum valid value
Returns: an integer
Also see: get Mai n()
function toH m ($style = "")

IpAddressList

The class | pAddr essLi st extends For nFi el d.

Label

The class Label extends Ht m Conponent .

Implements

Label implements Col | at abl e.

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—27

function

function

function

function

function

Public Methods

Label ($page, $l abel, $description = "")

Description: constructor

Parameters

page: the Page object this object lives in

| abel : a label string

get Descri ption()

Description: get the description of the label
Returns: a string

Also see: set Descri ption()

set Description()

Description: get the description of the label
Returns: a string

Also see: get Descri ption()

get Label ()

Description: get the label string of the label
Returns: a string

Also see: set Label ()

set Label ($! abel)

Description: set the label string of the label
Returns: a string

Also see: get Label ()

A—28 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Locale

The class Local e extends For nFi el d.
Public Methods
function get Possi bl eLocal es()
Description: get the list of possible locales
Returns: an array of locale strings
Also see: set Possi bl eLocal es()
function set Possi bl eLocal es($possi bl eLocal es)
Description: set the list of possible locales
Parameters

possi bl eLocal es: an array of locale strings; br owser is also a possible special locale
string case

Also see: getPossibleLocales()

Parameters

possi bl eLocal es: an array of locale strings; br owser is also a possible special locale
string case.

MacAddress

The class MacAddr ess extends For nFi el d.

MailListName

The class Mai | Li st Nane extends For nFi el d.

Appendix A: User Interface Foundation Classes A—29
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

ModifyButton

function

MultiButton

This class creates a Modi f yBut t on. The application causes a Modi f yBut t on action when
the button is clicked.

Extends:

The class Det ai | But t on extends But t on.

Implements:

The cl ass but t on implements HTM_Conponent , St yl i sh, and Col | at abl e.

See also:

AddBut t on, BackButton, Cancel Button, Detail Button, MiltiButton,
RenoveBut t on, SaveButton

Public methods

Modi f yBut t on($page, $acti on)
Description: constructor

Parameters

page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

This class represents a button with multiple actions. Users can perform one of those actions
by selecting it.

Applicability

Anywhere a related set of actions are provided for the users to select and the selected one is
being performed.

A—30

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

Usage

Instantiate a MultiButton by specifying a text. This text is like the label of the button. Use
addAction() to add actions to the button. Finally, use toHtml() to get a HTML representation
of the button to present.

Extends

The class Mul t i But t on extends For nFi el d.

Implements

The cl ass Ml ti Butt on implements HTM.Conponent , styl i sh, and col | at abl e. It
also implements acti on[], acti onText[], andt ext.

See also:

AddBut t on, BackButton, Cancel Button, Detail Button, MbdifyButton
RenmoveBut t on, SaveButton

Public Methods
Mul ti Button($page, $text ="", $id ="")

Description: constructor

Parameters

page: the Page object this object lives in
t ext : a label text in string. Optional
get Acti onText ($acti on)
Description: superclass constructor

get Actions()

Description: get all the text of the button
Returns: an array of text strings

Also see: addActi on(), getActions()

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—31

function

function

function

function

function

addActi on($acti on, $text)

Description: add an action to the button

Parameters

act i on: the string used within HREF attribute of the A tag
t ext : a label text in string

get Sel ect edl ndex()

Description: get the index of the selected action
Returns: an integer

Also see: set Sel ect edl ndex()

set Sel ect edl ndex($sel ect edl ndex)
Description: set the index of the selected action
Returns: an integer

Also see: get Sel ect edl ndex()

get Text ()

Description: get the default text of the button
Returns: a string

Also see: set Text ()

set Text ($t ext)

Description: set the default text of the button
Returns: a string

Also see: get Text ()

A—32

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

MultiChoice

function

function

This class represents a widget that allows users to choose one or more options. It can render
itself as different forms such as pull-down menus or checkboxes for different option types,
which can be a single option or many options.

Applicability:

Use Mul ti choi ce where options need to be selected.

Usage

Instantiate an object and add options, for example, Opt i on class, to it. Each option can
contain form field objects. For example, a multiple choice for payment method can have cash
and credit card options; the credit card option can have a credit card number field associated
with it. Although this class selects the best form to render automatically, users can use the
setFul | Si ze() to force this class to use a more readable but consume more space form. The
setMul ti pl e() methods can be uses to make multiple options selectable at once. When
multiple is set, this submitted value of this form field is an array encoded in a string by array
packer.

Extends

The class Mul t i Choi ce extends For nFi el d.

Public Methods

Mul ti Choi ce($page, $id)
Description: constructor

Parameters

page: the Page object this form field lives in
i d: the identifier of this object

get Opti ons()

Description: get all options added

Returns: an array of Option objects

Appendix A: User Interface Foundation Classes A—33
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

Also see: addOpt i on()

addOpti on($opti on, $sel ect ed)

Description: add an option; options are not selected by default when they are added.
Parameters

opt i on: an Option object

set Ful | Si ze($ful | Si ze)

Description: set the full size mode

Parameters

ful | Si ze: true to make the object rendered as more readable, but less compact; false
otherwise.

Returns: nothing.

set Mul tiple($multiple)

Description: set the multiple mode

Parameters
nul ti pl e: true if multiple choices can be selected at the same time; false otherwise
set Sel ect ed($i ndex, $isSelected = true)

Description: select a option

Parameters

i ndex: an integer index of the option

i sSel ect ed: true for selected, false otherwise. Optional and true by default.
Returns: nothing

set Val ue($val ue)

A—34 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

MultiFileUpload

The class Mul ti Fi | eUpl oad extends For nfi el d.

Public Methods
function Miulti Fil eUpl oad($page, $id, $val ue, $maxFil eSi ze = fal se,

nn

$i nval i dvessage = "", $enptyMessage = "")

Description: constructor

Parameters

page: the Page object this form field lives in

i d: the identifier of this object

val ue: the path

maxFi | eSi ze: the maximum file size allowed to upload in bytes. Optional
i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

function get MaxFil eSi ze()

Description: get the maximum file size allowed to upload
Returns: maxFi | eSi ze: bytes in an integer

Parameters
mexFi | eSi ze: bytes in integer
Also see: set MaxFi | eSi ze()
function set MaxFil eSi ze($nmaxFi | eSi ze)
Description: set the maximum file size allowed to upload

Returns: maxFi | eSi ze: bytes in an integer

Appendix A: User Interface Foundation Classes A—35
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters
maxFi | eSi ze: bytes in integer

Also see: get MaxFi | eSi ze()

NetAddress

The class Net Addr ess extends For nFi el d.

NetAddressList

The class Net Addr essLi st extends For nFi el d.

Option

This class represents an option for the Mil ti Choi ce class.
Applicability:
Use opt i on where Mul t i Choi ce is used.
Public methods
function Option($l abel, $value, $isSelected = false)
Description: constructor
Parameters
| abel : a Label object

val ue: the value of this option

i sSel ect ed: true if selected, false otherwise. The default is optional and false.

A—36

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Appendix A: User Interface Foundation Classes

function

function

function

function

function

get Label ()
Description: gets the label
Returns: a Label object
Also see: set Label ()
set Label ($I abel)

Description: set the label

Parameter

| abel : a Label object

Also see: get Label ()

i sSel ect ed()

Description: see if the option is selected
Returns: true if selected, false otherwise
Also see: set Sel ect ed()

set Sel ect ed($i sSel ect ed)
Description: select or unselect the option
Parameter

i sSel ect ed: true to select, false to unselect
Also see: i sSel ect ed()

get Val ue()

Description: get the value

Parameters
val ue: a string

Also see: set Val ue()

Appendix A: User Interface Foundation Classes A—37
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function set Val ue($val ue)

Description: set the value

Parameters
val ue: a string
Also see: get Val ue()
function get FornfFi el ds()
Description: get all the form fields of the block
Returns: an array of FormField objects

function get FornFi el dLabel ($f or nFi el d)

Description: get the label for a form field

Parameters
f or nFi el d: a FormField object

Returns: a Label object

functi on addFornfi el d($fornField, $label ="")
Description: add a form field to this option so this option can associate with another form
field
Parameters

f or nFi el d: a FormField object

| abel : a Label object. Optional

Page

This class represents a page on the user interface. It also encapsulates all information about
the page. For example, a Stylist object and an I18n object resides in each Page object.

A—38 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Applicability:
This class is applicable to every page on the user interface that uses UIFC.
Usage

All UIFC pages must have one and only one page object. All t oHt nl () calls of any
Ht m Conponent must reside within the toHeader Ht ml () and t oFoot er Ht i () calls of
the page object. Otherwise, undefined result can happen.

Public Methods
function Page($stylist, $il1l8n, $formAction)

Description: constructor

Parameters
stylist: aStylist object that defines the style
i 18n: an I18n object for internationalization
f or mAct i on: the action of the Form object for this Page. Optional
function get Form()
Description: get the form embedded in the page
Returns: a Form object
function getl 18n()
Description: get the | 18n object used to internationalize this page
Returns: an | 18n object
Also see: set 1 18n()
function set OnLoad($j s)

Description: set JavaScript to be performed when the page loads

Parameters

j s: a string of JavaScript code

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—39

functi

functi

functi

functi

functi

functi

on

on

on

on

on

on

get Stylist()

Description: get the stylist that stylize the page

Returns: a Stylist object

Also see: set Stylist()

setStylist($stylist)

Description: set the stylist that stylize the page
Parameters

styli st:a Stylist object

Also see: get Stylist()

get Subnmi t Acti on()

Description: get the submit action that submits the form in this page
Returns: a string

get Subni t Tar get ()

Description: get the target of the embedded form to submit to
Returns: a string

Also see: set Submi t Tar get ()

set Submi t Tar get ($t ar get)

Description: set the target of the embedded form to submit to
Returns: a string

Also see: get Submi t Tar get ()

t oHeader Ht nml ($style = "")

Description: translate the header of the page into HTML representation

Parameters

style: a Style object that defines the style of the representation. Optional. If not supplied,

default style is used

A—40

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Returns: HTML in string

function toFooterH m ($style = "")

Description: translate the footer of the page into HTML representation
Parameters

st yl e: a Style object that defines the style of the representation. Optional. If not supplied,
default style is used

Returns: HTML in string

PagedBlock

PagedBl ock represents a block that have multiple pages with each of them having their own
form fields. The states of form fields on different pages are automatically maintained.

Applicability

Use this class to separate functionally cohesive, but context distant information. For example,
use it to group basic information into one page and advanced information in another. Do not
use this class simply for navigation purposes, use the navigation system instead.

Usage

To use this class for just one page, create a PagedBl ock object and add form fields without
specifying any page IDs. To support multiple pages, after constructing an object, add pages to
it. Afterwards, add form fields to the pages. The page to display can be selected by using

set Sel ect edl d(), but this is optional. The page to display is maintained automagically
based on user interaction. Changed form field values are passed back to the pages as

$f or nFi el dI d. After submission, $pagel d for visited pages are set to true. Use

get St art Mar k() and get EndMar k() to put HTML code outside the scope of PHP into the
context of pages.

The class PagedBl ock extends Ht ml Conponent . PagedBl ock implements page and
t oHTML() .

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—41

function

function

function

function

Public Methods
PagedBl ock($page, $id, $label)

Description: constructor

Parameters

page: the Page object this block is in

i d: an unique ID of the block in string

| abel : a Label object for the block title
get Butt ons()

Description: get all buttons added to the block
Returns: an array of Button objects
Also see: addBut t on()

addBut t on($but t on)
Description: add a button to the list
Parameters

but t on: a Button object

Also see: get But t on()
get EndMar k($pagel d)

Description: get the mark for marking the end of a HTML section specifically for a page.

This is useful for adding page specific HTML

Parameters
pagel d: the ID of the page in string
Returns: the mark in string

Also see: get St art Mar k()

A—42

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

get For nFi el ds()

Description: get all the form fields of the block

Parameters

pagel d: the ID of the page the form field is in. Optional if there is only one page.
Returns: an array of FormField objects

Also see: addFor nFi el d()

addFornFi el d($fornField, $label ="", $pageld = "")

Description: add a form field to this block

Parameters
f or nFi el d: a FormField object

| abel : alabel object. Optional. Hidden form fields are not shown and therefore do not need
labels

pagel d: the ID of the page the form field is in; optional if there is only one page
Returns: nothing

Also see: get For nFi el d()

get Di vi ders()

Description: get all dividers added to the block

Returns: an array of Label objects

Also see: addDi vi der ()

addDi vi der ($l abel = "", $pageld = "")

Description: add a divider

Parameter

| abel : a label object. Optional.

pagel d: the ID of the page the form field is in; optional if there is only one page.

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

functi on get For nFi el dLabel ($f or nFi el d)

Description: get the label for a form field

Parameter
f or nFi el d: a FormField object
Returns: a Label object
Also see: get Di vi der s()
functi on get FornFi el dPagel d($f or nFi el d)
Description: get the page ID of a form field
Parameter
formField: a FormField object
Returns: page ID in string
function getLabel ()
Description: get the label of the block
Returns: a Label object
Also see: set Label ()
function set Label ($l abel)
Description: set the label of the block
Parameter
| abel : a Label object
Also see: get Label ()
function getld()

Description: get the ID of the block

Parameters

| d: a string

A—44

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Appendix A: User Interface Foundation Classes

function

function

function

function

function

Returns: a string
Also see: set | d()
set 1 d($id)

Description: set the ID of the block

Parameters

| d: a string

Returns: a string

Also see: get 1d()

get Pagel ds()

Description: get all the page IDs

Returns: an array of IDs in string
Also see: addPage()

get PageLabel ($pagel d)

Description: get the label of a page

Parameters

pagel d: the ID of the page

Returns: a Label object

addPage($pagel d, $I abel)

Description: add a page into the paged block
Parameters

pagel d: the ID of the page in string

| abel : a Label object for the page
get Sel ect edl d()

Description: get the ID of the selected page

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—45

function

function

Password

function

Returns: a string
Also see: set Sel ect edl d()

set Sel ect edl d($sel ect edl d)

Description: set the ID of the selected page

Parameters

sel ect edl d: a ID string

get St art Mar k($pagel d)

Description: get the mark for marking the start of a HTML section specifically for a page

Parameters
pagel d: the ID of the page in string

Returns: the mark in string

The class Passwor d extends For nFi el d.

Public Methods

Description: constructor

Passwor d($page, $stylist, $id, $val ue,

$enpt yMessage = "")

Parameters

page: the Page object this form field lives in
stylist: aStylist object that defines the style
i d: the identifier of this object

val ue: the default value

$i nval i dMessage,

A—46 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

function isConfirm))
Description: see if the confirm field is shown
Return: if true, a confirm field is shown
Also see: set Confirm))

function set Confirm($isConfirm

Description: set the configuration flag

Parameter
i sConfirm iftrue, a confirm field is shown

Also see: i sConfirn()

RemoveButton

The class RenpveBut t on extends Butt on.

Public Methods
functi on RenopveButton($page, $action)

Description: constructor

Parameters
page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

Appendix A: User Interface Foundation Classes A—47
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

SaveButton

function

ScrollList

The class SaveBut t on extends But t on.

Public Methods
SaveBut t on($page, $acti on)

Description: constructor

Parameters
page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

The class Scr ol | Li st extends Ht Ml Conponent . The class represents a list of similar
elements to be displayed on pages. This class automatically maintains the number of pages
and determine which one to display.

Applicability

User this class when a list of similar elements needs to be represented. Do not use this class
for list of different elements.

Usage

This class simply constructs a Scr ol | Li st object with a list of entry labels specified. You
can add entries using the addEnt r y() method.

NOTE: Remember to keep the number of elements of each entry the same as
the number of entry labels.

A—48

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

Public Methods

Scrol | Li st ($page, $id, $l abel, $entrylLabels, $sortables =
array())

Description: constructor

Parameters

page: the Page object this object lives in

i d: the identifier in string

| abel : a label object for the list

entryLabel s: an array Label object for the entries

sor t abl es: an array of indexes of the sortable components. Optional.
get Al i gnment s()

Description: get the horizontal alignments of items in entries
Returns: an array of alignment strings.

Also see: set Al i gnnent s().

set Al i gnnent s($al i gnnent s)

Description: set the horizontal alignments of items in entries

Parameters

al i gnnment s: an array of alignment strings, for example, "", | ef t, center, orright.
and empty array element means left. First alignment string for the first item in entries, second
alignment string for the second item in entries and so forth

Also see: get Al i gnment s()

get Col umW dt hs()

Description: get the column widths for items in entries
Returns: an array of widths

Also see: set Col umW dt hs()

Appendix A: User Interface Foundation Classes A—49
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

set Col umW dt hs($col umW dt hs)
Description: set the widths of label and form field

Returns: an array of widths in integer (pixel) or string (for example, "60%"). The first
element is for label and the second element is for form field.

Also see: get Col utmW dt hs()

Parameters

wi dt hs: an array of widths in numbers (for example, 100), percentage strings (for example,
25%),". ", or empty elements, which means no defined width.

Also see: getColumnWidths()
addBut t on($but t on)

Description: add a button to the list

Parameters

but t on: a Button object

Also see: get But t ons()

set Sel ect Al | ($sel ect All = true)

Description: when sel ect al 1is on and entries can be selected, a widget is available on the
list to select or unselect all entries at once.

Parameters

sel ect Al | : aboolean

Also see: i sSel ect Al l (), addEntry()
isSelectAl ()

Description: get the select all flag

Returns: t rue if sel ect al 11is enabled; f al se otherwise.

Also see: addEnt ry()

A—50

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

set Empt yMessage($nmsg = "")

Description: set the message to be displayed when the list is empty
Parameters

msg: an | 18n tag of the form [[domai n. messagel d]] for interpolation
getDuplicateLinmt()

Description: get the upper limit of duplicate buttons at the end of the list
Returns: an integer

Also see: set Dupl i cateLinmt()

set DuplicateLimt($duplicateLimt)

Description: the upper limit of duplicate buttons at the end of the list

Parameter
dupl i cat eLi mi t : the limit in integer
Also see: get Dupl i cateLimt()

nn

addEntry($entry, $entryld = "", $entrySel ected = fal se,
$entryl ndex = -1)

Description: add an entry to the list

Parameters

ent ry: an array of objects that consist the entry

ent ryl d: an unique ID for the entry. Optional. If supplied, the entry can be selected
ent rySel ect ed: true if the entry is selected, false otherwise.Optional.

ent r yNunber : the index of the entry on the list. Optional. If not supplied, the entry is
appended to the end of the list

get Ent r yNum()
Description: get the number of entries in the list

Returns: an integer

Appendix A: User Interface Foundation Classes A—51
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

Also see: set Ent ryNun{) , addEntry()
set Ent r yNum($ent r yNum)

Description: tell the list how many entries are there in the list. This is useful when you use
addEnt ry() only to add a section of the list, so you need to tell the list how many entries are
really there

Parameters

ent r yNum an integer

Also see: getEntryNum(), addEntry()

set Ent r yCount Tags($si ngul ar, $plural)

Description: set the i 18n message tags used in entry count. Message tags have the format of
[[<dommi n>. <messagel d>]]

Parameters

si ngul ar : a string message tag used when only one entry is listed
pl ural : a string message tag used when many or zero are listed
getEntries()

Description: get all the entries added to the list

Returns: an array of entries. Each entry is an array of Ht ml Conponent objects
Also see: addEnt ry()

get EntryLabel s()

Description: get the labels for each item of the entries

Returns: an array of Label objects

Also see: set Ent ryLabel s()

set EntrylLabel s($entryLabel s)

Description: set the labels for each item of the entries

A—52 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters
ent ryLabel s: an array of Label objects
Also see: get Ent ryLabel s()
function getld() {
Description: get the ID of the block
Returns: an ID string
Also see: set | d()
function setld($id)

Description: set the ID of the block

Parameters
i d: an ID string
Also see: get | d()
function getLabel ()
Description: get the label of the block
Returns: a Label object
Also see: set Label ()
function set Label ($l abel)

Description: set the label of the block

Parameters
| abel : a Label object
Also see: getLabel()
function getLength()
Description: get the maximum length of pages on the list.

Returns: an integer

Appendix A: User Interface Foundation Classes A—53
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

Also see: set Lengt h()
set Lengt h($l engt h)

Description: set the maximum length of pages on the list. For example, if length is set to 10,
and there are 25 entries, the list is presented in 3 pages of 10, 10 and 5 entries.

Parameters

| engt h: an integer

Also see: get Lengt h()

get Pagel ndex()

Description: get the index of the page the list is presenting
Returns: an integer

Also see: set Pagel ndex(), setLength()

set Pagel ndex($pagel ndex)

Description: set the index of the page the list is presenting

Parameters

pagel ndex: an integer

Also see: get Pagel ndex(), set Lengt h()

i sSort Enabl ed()

Description: see if sorting is done by the list
Ret ur ns: a boolean

Also see: set Sort Enabl ed()

set Sor t Enabl ed($sort Enabl ed)

Description: enable or disable sorting done by the list. This method is useful if entries
supplied are already sorted.

Parameters

sort Enabl ed: a boolean

A—54 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Also see: getSortEnabled()

function get Sortabl es()
Description: get the sortable components of the entries
Returns: an array of indexes of the sortable components
Also see: set Sort abl es()

function set Sortabl es($sort abl es)

Description: set the sortable components of the entries

Parameters
sor t abl es: an array of indexes of the sortable components
Also see: get Sort abl es()

function get Sortedl ndex()
Description: get the index of the components that are sorted
Returns: an integer
Also see: set Sort edl ndex()

function set Sortedl ndex($sort edl ndex)

Description: set the index of the components that are sorted. This method always overrides
user selection. Use set Def aul t Sor t edl ndex() if overriding is not desired

Parameters
sort edl ndex: an integer. If -1, no sorting is done
Also see: get Sort edl ndex()
function set Defaul t Sort edl ndex($sort edl ndex)

Description: set the index of the components that are sorted. If user has made selections, this
method will not override it

Parameters

sor t edl ndex: an integer. If -1, no sorting is done

Appendix A: User Interface Foundation Classes A—55
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

SetSelector

get Sort Order ()

Description: get the order of sorting

Returns: ascendi ng or descendi ng

Also see: set Sort Or der ()

set Sort Order ($sort Order = "ascendi ng")
Description: set the order of sorting

Parameters

sortOrder: ascendi ng or descendi ng. Optional and ascending by default
Also see: getSortOrder()

sortEntries(&$entries)

Description: the method to sort the entries when displaying the list
Parameters

ent ri es: the array of entries to sort
toH M ($style = "")

Description: turn the object into HTML form

Parameters
st yl e: the style to show in (optional)

Returns: HTML that represents the object or "" if pagel ndex is out of range

The class Set Sel ect or extends For nFi el d.

A—56

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

Public methods
Set Sel ect or ($page, $id, $value, $entries, $enptyMessage)

Description: constructor

Parameters

page: the Page object that this object lives in

i d: the identifier of the object

val ue: an ampersand (&) separated list for the value set
entri es: an ampersand (&) separated list for the entry set
enpt yMessage: message to be shown upon empty input
get Entri esLabel ()

Description: get the label of the entry set

Returns: a Label object

Also see: set Ent ri esLabel ()

set Entri esLabel ($entriesLabel = "")

Description: set the label of the entry set

Parameters

entri esLabel : a Label object

Also see: get Entri esLabel ()

get Val ueLabel ()

Description: get the label of the value set
Returns: a Label object

Also see: set Val ueLabel ()

set Val ueLabel ($val ueLabel = "")

Description: set the label of the value set

Appendix A: User Interface Foundation Classes A—57
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

Parameters

val uelLabel : a Label object

Also see: get Val uelLabel ()

getEntries()

Description: get the entry set to choose from
Returns: an ampersand-separated list for the entry set
Also see: set Entri es()
setEntries($entries)

Description: set the entry set to choose from
Parameters

ent ri es: an ampersand-separated list for the entry set

SnmpCommunity

The class SnnpCommuni t y extends For ni el d.

Public methods

function toH m ($style = "")

StatusSignal

The class St at usSi gnal extends Ht i Conponent .

Public Methods

function StatusSignal ($page, $status, $url ="")

Description: constructor

A—58 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters
page: the Page object this object lives in

status: none, normal, problem severeProblem new, disabled,
noMbnitor, replied, old, success, failure, pending

ur | : the url to which to link (optional)
function get Col | at abl eVal ue()
function get Status()

Description: get the status

Returns: a string

Also see: set St at us()
function set St at us($st at us)

Description: set the status

Parameters

status: a string. Possible values are noMoni t or, di sabl ed, none, nor mal , pr obl em
sever eProbl em new replied, ol d, success, fail ure, pendi ng

Also see: get St at us()
function setUrl ($url)

Description: set the URL to link to
Parameters
ur | : the url to which to link
function setDescri bed($descri bed)
Description: describe the signal to users if set to true
Parameters

descri bed: true if described, false otherwise

Appendix A: User Interface Foundation Classes A—59
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Also see: i sDescri bed()

function isDescribed()
Description: see if the signal is described to users
Returns: true if described, false otherwise

Also see: set Descri bed()

NOTE: For information on the Style class, see the Style appendix.

Stylish
The class St yl i sh gets t he default style; subclasses should always override this style.
Public Methods
function get Defaul t Styl e($stylist)
Parameters
stylist: aStylist object

Returns: a Style object

Stylist
The class St yl i st gets a list of all the style resources that are available.

Public Methods
function get Al |l Resour ces($l ocal ePreference)

Description: get a list of all the style resources available

A—60

Appendix A: User Interface Foundation Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

Parameters

| ocal ePr ef er ence: a comma-separated list of preferred locale
Returns: a hash of style resource i d to name

set Resour ce($styl eResource, $l ocal e)
Description: set the style resource

Parameters

styl eResour ce: an ID in string that identifies the style resource
| ocal e: a locale string for style localization

set Styl e($styl e)

Description: set a style object to the stylist

get Styl e($styleld, $stylevariant = "")

Description: get a style object with the specified i d and vari ant . If no style of the i d and
vari ant can be found, only the i d is used. If no style of the i d can be found, an empty style
is returned.

Parameters

st yl el d: the identifier of the style in string

styl eVari ant : the variant of the style in string

Returns: a Style object with properties if the style can be found; empty Style object otherwise
_Stylist_getResourceld($file, $local ePreference)

Description: get the style resource ID from a file

Parameters

fil e: path of the file in string

| ocal ePr ef er ence: a comma-separated list of preferred locale

Returns: a style resource ID in string if succeed or false otherwise

Appendix A: User Interface Foundation Classes A—61
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function
function

function
function

function

TextBlock

function

Stylist|oad($styl eResource, $l ocal e)

Description: loads in a style from st yl eDi r defined in the configuration file

Parameters

styl eResour ce: an identifier string

Style <styleDir>/<styl eResource>. xm is |oaded

| ocal e: a locale string for style localization; it returns a hash containing all the style
information or empty hash if failed, including key i d contains the i d in string, key var i ant
contains the variant in string, and key pr oper t y contains properties in a hash

_Stylist_startEl erent Handl er ($par ser, $nane,
$attri butes)

_Stylist_resourceEl enment Handl er ($par ser, $nane,
Sattri butes)

_Stylist_styleStartHandl er($attributes)
_Stylist _propertyStartHandl er($attri butes)
_Stylist_parsexm File($file, $startEl enent Handl er)

The class Text Bl ock extends For nFi el d.

Public Methods

Text Bl ock($page, $id, $value = "", S$enptyMessage = "")
Description: constructor

Parameters

page: the Page object that this object lives in

i d: the identifier of the object

val ue: a text string. Optional

A—62 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

function getHei ght ()
Description: get the height or number of rows
Returns: an integer
Also see: set Hei ght ()

function set Hei ght ($hei ght)
Description: set the height or number of rows
Returns: an integer
Also see: get Hei ght ()

function get Wdth()
Description: get the width or number of columns
Returns: an integer
Also see: get Wdt h()

function set W dt h($wi dt h)
Description: set the width or number of columns
Returns: an integer
Also see: get Wdt h()

function setWap($val = fal se)

Description: set to or not to wrap text

Parameter
val : true to wrap, false otherwise
Also see: i sWap()

function i sWap()

Appendix A: User Interface Foundation Classes A—63
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

TextField

function

function

function

Description: see if text should be wrapped or not
Returns: true to wrap, false otherwise

Also see: set W ap()

The class Text Fi el d extends For nFi el d.

Public Methods

Text Fi el d($page, $id, $val ue, $invalidMessage,
$enpt yMessage)

Description: constructor

Parameters

page: the Page object this form field lives in

i d: the identifier of this object

val ue: the default value

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

set Si ze($si ze)

Description: set the size or number of columns
Parameters

si ze: an integer

set MaxLengt h($I en)

Description: set the maximum length or characters the field can take

A—64 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Parameters

| en: an integer

TextList

The class Text Li st extends For nFi el d.

TimeStamp

The class Ti meSt anp extends For nfi el d.
function Ti meStanp($page, $id, $val ue)

Description: constructor

Parameters

page: the Page object this form field lives in

i d: the identifier of this object

val ue: the number of seconds since Epoch
function get Format ()

Description: get the format of the time stamp

Parameters
format:canbedate,tine, ordatetine
Also see: get f or mat ()

function set Format ($f or mat)

Description: set the format of the time stamp

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—65

TimeZone

function

Parameters
format:canbedate,ti me, ordatetine

Also see: get f or mat ()

The class Ti meZone extends For nFi el d.
Public Methods

Ti neZone($page, $id, $val ue)
Description: constructor

Parameters

page: the Page object this form field lives in

i d: the identifier of this object

UninstallButton

function

The class Uni nst al | But t on extends But t on.

Public Methods

Uni nst al | Butt on($page, $acti on)
Description: constructor

Parameters

page: the Page object this object lives in

act i on: the string used within HREF attribute of the A tag

A—66 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Url

The class Ur 1 extends For nFi el d.

Public Methods
function Url ($page, $id, $value, $label = "", $target = ",

nn

$i nval i dvessage = "", $enptyMessage = "")

Description: constructor

Parameter

page: the Page object this form field lives in

i d: the identifier of this object

val ue: the URL

| abel : a label in string. Optional

t ar get : the TARGET attribute of the A tag. Optional

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional.

function get Col | at abl eVal ue()
function getLabel ()

Description: get the label

Returns: a label in string

Also see: setLabel()
function set Label ($l abel)

Description: set the label

Parameters

| abel : a label in string

Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

A—67

function

function

UrlList

function

Also see: get Label ()

get Target ()

Description: get the target

Returns: the TARCET attribute of the A tag
Also see: set Tar get ()

set Tar get ($t ar get)

Description: set the target

Parameters
t ar get : the TARGET attribute of the A tag

Also see: get Tar get ()

The class Ur | Li st extends For nFi el d.

Public Methods

Url Li st ($page, $id, $val ue, $labels = array(), $targets =

array(), $invalidMvessage, $enptyMessage)

Description: constructor

Parameters

page: the Page object this form field lives in
i d: the identifier of this object

val ue: an URL encoded list of URLs

| abel s: an array of label strings. Optional

t ar get s: an array of target attributes for the A tag in strings. Optional

A—68 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

i nval i dMessage: message to be shown upon invalid input. Optional

enpt yMessage: message to be shown upon empty input if the field is not optional. This
message is optional

function getLabel s()
Description: get the labels
Returns: an array of label strings
Also see: set Label s()
function setLabel s($l abel s)
Description: set the labels
Parameters
| abel s: an array of label strings
Also see: get Label s()
function get Targets()
Description: set the targets attributes
Parameters
| abel s: an array of label strings
Also see: get Tar get s()
function set Target s($targets)
Description: set the labels
Parameters

| abel s: an array of label strings

UserName

The class UserName extends For nFi el d.

Appendix A: User Interface Foundation Classes

A—69
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

UserNamelList

The class User NaneLi st extends For nFi el d.

VerticalCompositeFormField

The class Ver ti cal Conposi t eFor nFi el d extends Conposi t eFor ni el d.

A—T70 Appendix A: User Interface Foundation Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Appendix B

Utility Classes

This appendix describes three utility classes:
¥ ArrayPacker
¥ Error
¥ ServerScript Hel per

These classes work in conjunction with the UIFC classes to help you create User Interface
pages.

ArrayPacker

ArrayPacker provides alibrary of functions for packing and unpacking arrays or hashes to
or from strings. The functions use CCE preferred array packing format, which is URL-
encoded elements delimited by ampersands (&). For example, an array of fi r st , seco&d,
and _t hi rdispackedinto & i r st &eco®6d& t hir d&.

Applicability
This class can be used anywhere where arrays or hashes need to be get from or put into CCE.
function arrayToString($array)
Description: converts an array to a string
Paramater
array: an array of strings

Returns: the packed array in string

B—2

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Appendix B: Utility Classes

function

function

function

function

stringToArray($string)

Description: convert a string to an array

Parameter

string: a packed array in string

Returns: an array of strings

i slnArrayString($needl e, $hayStack)

Description: to see if a string is in an array

Parameters

need! e: the string to find

hay St ack: a packed array in string
Returns: true if string found, false otherwise

hashToSt ri ng($arr ay)

Description: convert a hash (associative array) to a string, for example, ["f 00"] = "bar",

[1] = "one" => "&f oo=bar&l=one&"

Parameters
array: a hash

Returns: a packed hash in string

stringToHash($string)

Description: convert a string to a hash (associative array), for example,

" & oo=bar &l=one&" => ["foo"] = "bar", [1]

Parameters
string: a packed hash in string

Returns: a hash

"one"

Appendix B: Utility Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

Error

function

function

function

function

This class represents an error.
Error($nmessage, $vars = array())
This method sets the error message with the nessage and var s parameters.

Description: constructor

Parameters

message: an internationalizable string, that is, it can have [[domai n.id]] tags.

var s: ahash of variable namesto values for localizing the string
get Message()
Description: get the error message

Returns: an internationalizable string

Parameters

nessage: an internationalizable string, that is, it can have[[domai n. i d]] tags.

var s: ahash of variable names to values for localizing the string
See also: set Message()

Optional Methods

set Message($nessage, $vars = array())
Returns: none

get Vars()

Description: get the hash for string localization

Returns: var s: a hash of variable names to values for localizing the message string. Optional

See also: set Message()

B—4 Appendix B: Utility Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function setVar ($key, $val)
Description: adding a variable to the string localization hash
Parameters
key: the key of the variable in string
val : the value of the variable in string

See also: getVars()

ServerScriptHelper

This class is designed to facilitate the development of server-side scripts. It is a library of
commonly used functions.

Applicability

This class is applicable to server-side scripts that use session, UIFC, | 18n, and CCE.

Usage

This class construct a new Ser ver Scri pt Hel per at the start of every server-side script. It
automatically gets session information, identifies the logged-in user, and connects to CCE to
find out more information about the user. The get method can be used to get information
about the script.

NOTE: Always call dest ruct or () at the end of the scripts.

Public Methods
function ServerScript Hel per($sessionld = "", $loginName = "")

Description: constructor

Appendix B: Utility Classes B—5
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

Parameters

sessi onl d: the session i d in string. Optional. If not supplied, the global $sessi onl d is
used

| ogi nNane: the login name of the user in string. Optional. If not supplied, the global
$l ogi nNane is used

redirect()
destructor ()
Description: destructor
getFi |l e($fil enane)

Description: Returns the contents of a file using the Unix permissions granted to the current
CCE user.

Parameters

fil enanme: The filename of the file to be opened

Returns: the contents of the file

popen($cnd)

Description: opens a read-only stream wrapped by CCE

Parameters

pr ogr am A string containing the program to execute, including the path and any arguments
Returns: a file handle to be read from

shel | ($cnd, &S$out put)

Description: allows one to execute a program as the currently logged in user
Parameters

program: A string containing program to execute, including path and any arguments output
variable that picks up the output sent by the program

Returns: 0 an success, error number on error

B—6

Appendix B: Utility Classes

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

fork($cnd)

Description: allows one to fork a program as the currently logged in user.

NOTE: No interaction between the called program and the caller can be made.

Parameters

program: A string containing program to execute, including path and any arguments
Returns: 0 an success, error number on error

get AccessRi ght s()

Descriptions: get an array of access rights

Returns: an array of access rights in strings

getCcedient()

Description: get a connected and authenticated CceClient

Returns: a CceCl i ent object

get Ht M Conponent Fact or y($i 18nDomai n, $f ormAction = "")

Description: get a Ht nl Conponent Fact or y object to construct Ht ml Conponent s

Parameters

i 18nDomai n: the | 18n domain used for construction

f or mAct i on: the action of the form in which Ht Ml Conponent s reside
Returns: a Ht nl Conponent Fact ory object

t oErrorJavascri pt ($errors)

Description: represent errors in JavaScript

Parameters

errors: an array of error objects

Returns: JavaScript if error occurred or "" otherwise

Appendix B: Utility Classes B—7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function

function

function

function

function

nn

get!18n($donai n = , $httpAccept Language = "")
Description: get the right | 18n object

Parameters

domai n: the domain of the I18n object. Optional

ht t pAccept Language: the HTTP_ACCEPT_LANGUAGE header. Optional. If not
supplied, global $SHTTP_ACCEPT_LANGUAGE is used

Returns: an | 18n object
get Local ePr ef erence($htt pAccept Language = "")

Description: gets the preferred locale specified by the logged -in user if br owser is
preferred, locale from HTTP_ACCEPT_LANGUAGE is used. If no locale is preferred, use the
def aul t Local e specified in ui . cf g.

Parameters

ht t pAccept Language: the HTTP_ACCEPT_LANGUAGE header. Optional. Global
HTTP_ACCEPT_LANGUAGE is used if a value is not supplied.

Returns: a list of locales in string separated by commas.
get Logi nNane()

Description: get the name of the logged-in user
Returns: login name in string

get Styl ePref erence()

Description: gets the style preferred by the logged in user; if user has no preference or if the
preference is not available, use any style available on the system

Returns: style ID in string
get Stylist()

Description: get the St yl i st who gives right styles according to the style preference of the
logged-in user

Returns: a St yl i st object

B—8 Appendix B: Utility Classes
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved

function toHandl erHt m ($returnUl = "", $errors = array())

Description: gets the HTML page to be printed out by UI page handlers

Parameters
returnUrl : the URL the handler returns to. Optional
errors: an array of Error objects for errors occurred within the handler. Optional
function get CLi st Styl eJavascri pt()
Description: get JavaScript to set style for collapsible list
Returns: JavaScript in string
function get Fl owControl Styl eJavascri pt ()
Description: get JavaScript to set style for flow navigation
Returns: JavaScript in string
function getlnfoStyl eJavascri pt()
Description: get JavaScript to set style for info
Returns: JavaScript in string
get TabSt yl eJavascri pt ()
Description: get JavaScript to set style for tab
Returns: JavaScript in string
function getTitleStyl eJavascript()
Description: get JavaScript to set style for title

Returns: JavaScript in string

Appendix C |

About Style

This Appendix provides a comprehensive description of the St yl e file. See How Styles
Work on page 3—=6 for an overview.

Style Files

Style files are XML files located under the directory described by styl eDi r in
/usr/sausal it o/ ui/styl e/ ui.cfg.Each of these files contains all the information about
a certain style resource. These XML files can contain st yl eResour ce, styl e, and
property elements.
An example of a style file is:
<styl eResour ce nane="Good Looki ng">
<style id="Bl ock">
<property name="backgroundCol or" val ue="#FFFFFF"/>

</styl e>

<style id="Label ">
<property name="col or" val ue="#FFFFFF"/ >
</styl e>
</ styl eResour ce>
Style files must be enclosed by a st yl eResour ce element. This element can have these
attributes:
name ::= internationalizable string

nane is the name of the style resource. The interpolate function of I 18n module is used to
internationalize this string.

c—2 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Within st yl eResour ce, there are st yl e elements. Each st yl e element describes one style.
The attributes of this element are:

id::=[a-zA-Z0-9_\-]1+
This is the identifier of the style.
variant ::=[a-zA-Z0-9_\-]+

NOTE: The vari ant attribute is optional. It acts as a secondary identifier of
the style. Each style in the same style file must have a unique i d and vari ant .

Within st yl e elements, there are pr opert y elements. Each of these elements describes a
property of the style. The attributes are:

name ::= [a-zA-Z0-9_\-]+

Each property is identified by a name.
target ::= [a-zA-Z0-9 \-]+

The t ar get attribute is optional. It acts as a secondary identifier and specifies the target to
which property applies. Properties within a style element must not have the same names and
targets.

value ::= string

where string is the value of the property.

Supported Styles

Property Types

Different properties have different value types. These are commonly used types for the
properties:

Boolean

String "true" or "false".

Appendix C: About Style c—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Color

RGB format (for exanple, #RRGEBB) or nanmes (for exanple, green).

Positive integer

Positive integers including O.

URL
A URL.

Common Properties

These are properties used commonly in many different styles.

backgroundColor

Description: the background color of the page.

NOTE: Do not be use with property backgr oundl nage.

Value type
Col or

backgroundimage

Description: the background image of the page.

NOTE: Do not be use with property backgr oundCol or.

Value type
URL

c—4 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

borderThickness

The pixel thickness of border.

Value type

Positive integer

color

The color of text.

Value type
Col or

fontFamily

The family of the font that is used.

Value type

Sane as CSS-1 font-famly definition. Generic famlies are
cursive, fantasy, nonospace, sans-serif and serif.

fontSize

The size of the font.

Value type

Same as CSS-1 font-size definition. For example, 12pt, large or 120%.

fontStyle

Description: the style of the font.

Appendix C: About Style Cc—5
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Value type

Same as CSS-1 font-style definition. For example, normal or italic.

fontWeight

Description: the fontWeight is the weight (boldness) of the font.

Value type

The Value type is the same as CSS-1 font-weight definition, for example, bold or 900.

textDecoration

Description: Decoration of text.

Value type

Same as CSS-1 text-decoration definition. For example, blink, line-through, none or
underline.

width

Description: Pixel width.

Value type

Positive integer

Styles

Bar

For UIFC. Bar class that represents a bar chart.

C—6

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix C: About Style

Common properties
col or
fontFam |y
fontSi ze
fontStyle
f ont Wi ght

t ext Decor ati on

Unique properties

none

emptylmage
Image for the empty portion of the bar.

Value type
URL

Possible target(s)

none

endlmage

Image for the end portion of the bar.

Value type
URL

Possible target(s)

none

Appendix C: About Style C—7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

filledlmage

Image for the filled portion of the bar.

Value type
URL

Possible target(s)

none

startimage

Image for the start portion of the bar.

Value type
URL

Possible target(s)

none

Button

Button is a class in the UIFC; see Appendix A for moreinformation. The But t on class
represents a clickable button.

Common properties
backgr oundCol or
backgr oundl nage
col or
fontFam |y
fontSi ze
fontStyle
f ont Wi ght

C—8

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix C: About Style

t ext Decorati on

CancelButton

Label

Common properties

backgr oundCol or
backgr oundl mage
col or

fontFam |y
fontSize
fontStyl e

f ont Wi ght

t ext Decor ati on

For UIFC. Label class represent a text label with description.

Common properties

backgr oundCol or
backgroundl mage
col or
fontFamly
fontSize
fontStyl e

f ont Viéi ght

t ext Decor ati on

Cancel But t on class that represent a button for the cancel action for the UIFC.

Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

ModifyButton

For UIFC. Modi f yBut t on class that represent a button for the modify action.

Unique properties
nodi fyl con

lcon for the button.

Value type
URL

Possible target(s)

none

MultiChoice

For UIFC, Mul ti Choi ce class that represent a widget for selecting choices. It has choices:
Label, fornFiel dLabel, and subscri pt.choi ce Label represents labels of choices.
f or nFi el dLabel represents labels of form fields if choices have them. subscri pt
represents subscripts used in Mul t i Choi ce class such as opti onal .

Common properties

color, fontFamly, fontSize, fontStyle, fontWight and
t ext Decor ati on

Possible targets:

choi ceLabel , fornFiel dLabel, subscri pt

Page
For UIFC; Page class that represents a user interface page.

Common properties
backgr oundCol or

c—10 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

backgr oundl mage
col or
fontFamly
fontSize
fontStyle

f ont Wi ght

t ext Decorati on

Unique properties
center

cent er defines if all the content of the page should be centered.

Value type

Bool ean

Possible target(s)

none

PagedBlock

For UIFC. PagedBl ock class that represents blocks that group form fields together. It has:
di vi der Cel |
di vi der Label
fornFiel dCel |
| abel Cel |
| abel Label
subscri pt
t abSel ect ed
t abUnsel ect ed
titleCell
titleLabel

Appendix C: About Style C—11
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

di vi der Cel | represents the cells that act as dividers. di vi der Label represents labels in
divider cells. f or nFi el dCel | represents cells in which form fields reside. | abel Cel |
represents cells in which form field labels reside.

| abel Label represents labels in the form field label cells. subscript represents possible
subscripts used in PagedBl ock class such as opti onal .

t abSel ect ed represents the selected tab. t abUnsel ect ed represents tabs that are not
selected. titl eCel | represents the cell in which tit| eLabel resides.

titleLabel represents the label for the title.

Common properties

backgroundCol or and backgroundl mage (Possible targets: dividerCell,
fornFieldCell, label Cell, tabSel ected, tabUnselected, titleCell)
bor der Thi ckness

color, fontFamly, fontSize, fontStyle, fontWight and
t ext Decoration

Possible targets:
di vi der Label , | abel Label, subscript, tabSel ected,
t abUnsel ected, titleLabel) width

Unique properties
bor der Col or

The col or of the bl ock border.

Value type
Col or

Possible target(s)

none

dividerHeight

The pixel height of block dividers. If there is content within the divider and it is taller than this
value, the divider is expanded to be greater than this value to fit the content.

Cc—12

Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Value type
Posi tive integer
Possible target(s)
none

Icon
The icon image to indicate if the tab is selected or not.

Value type
URL

Possible target(s)

t abSel ect ed, tabUnsel ect ed

Password

For UIFC. Passwor d class that represents a password. It has subscri pt. subscri pt
represents subscripts used in the Password class such as repeat.

Common properties

color, fontFamly, fontSize, fontStyle, fontWight and
t ext Decoration

Possible targets

subscript

RemoveButton

For UIFC. RenpveBut t on class that represent a button for the remove action.

Appendix C: About Style Cc—13
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Unique properties

none

removelcon

Icon for the button.

Value type
URL

Possible target(s)

none

SaveButton

For UIFC. SaveButton class that represent a button for the save action.

Common properties
backgr oundCol or
backgr oundl nmage
col or
fontFam |y
fontSi ze
fontStyle
f ont Wi ght

t ext Decor ati on

SetSelector

For UIFC. Set Sel ect or class that represent a widget to select a subset out of a full set.

Cc—14 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Unique properties!
addl con

The icon for the add button to add entries to the set.

Value type
URL

Possible target(s)

none

addlconGray

The icon for the add button to add entries to the set in grayed out state.

Value type
URL

Possible target(s)

none

removelcon

The icon for the renbve button to add entries to the set.

Value type
URL

Possible target(s)

none

Appendix C: About Style C—15
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

removelconGray

The icon for the rempve button to add entries to the set in grayed
out state.

Value type
URL

Possible target(s)

none

ScrollList

For UIFC. Scrol | Li st class that represents a scrollable list. It has:
entryCel |
| abel Cel |
| abel Label
titleCell
titl eLabel

entryCel | represents cells in which entries reside. | abel Cel | represents cells in which
labels reside. label Label represents labels in label cells. ti t1 eCel | represents the cell in
which the title reside. ti t | eLabel represents the title label.

Common properties

backgr oundCol or and backgr oundl mage

Possible targets:
entryCell, labelCell, titleCell)

borderThickness

color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration

C—16 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Possible targets:

entryCell, labelLabel, titleLabel

Unique properties

none

borderColor

The color of the scroll list border.

Value type

URL

Possible target(s)

none

sortAscendinglcon

The icon for the button to sort entries in ascending order. Used in unsorted columns.

Value type
URL

Possible target(s)

none

sortDescendinglcon

The icon for the button to sort entries in descending order used in
unsorted col unms.

Appendix C: About Style Cc—17
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Value type
URL

Possible target(s)

none

sortedAscendinglcon

The icon for the button to sort entries in ascending order, used in the sorted column.

Value type
URL

Possible target(s)

none

sortedDescendinglcon

The icon for the button to sort entries in descending order, used in the sorted column.

Value type

URL

Possible target(s)

none

StatusSignal

For UIFC. St at usSi gnal class that represents a status signal.

c—18
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix C: About Style

Unique properties

none

failurelcon

The icon the indicate a failure state.

Value type
URL

Possible target(s)

none

newlcon

The icon the indicate a new state.

Value type
URL

Possible target(s)

none

nonelcon

The icon the indicate a none state.

Value type
URL

Possible target(s)

none

Appendix C: About Style c—19
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

normallcon

The icon the indicate a normal state.

Value type
URL

Possible target(s)

none

oldlcon

The icon the indicate an old state.

Value type
URL

Possible target(s)

none

problemlicon

The icon the indicate a problem state.

Value type
URL

Possible target(s)

none

repliedlcon

The icon the indicate a replied state.

Cc—20
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix C: About Style

Value type
URL

Possible target(s)

none

severeProblemlcon

The icon the indicate a severe problem state.

Value type
URL

Possible target(s)

none

successlcon

The icon the indicate a success state.

Value type
URL

Possible target(s)

none

cListNavigation

For the collapsible list navigation system.

Unique properties
col I apsi bl eLi st Wdth

Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

c—21

The pixel width of the collapsible Iist widget.

Value type

Positive | nteger

Possible target(s)

none

infoHeight

The pi xel height of the information w dget.

Value type

Positive | nteger

Possible target(s)

none

tabHeight

The pi xel height of the tab wi dget.

Value type

Positive | nteger

Possible target(s)

none

collapsibleList

For the collapsible list widget in the collapsible |list navigation

system

Cc—22 Appendix C: About Style

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Common properties

backgr oundCol or and backgr oundl nage

Possible targets:

list, page

borderThickness

color, fontFamly, fontSize, fontStyle, fontWight and
t ext Decorati on

Possible targets:

sel ected, unsel ected wi dth

Unique properties

none

collapsed Icon

The icon to indicate an item with children is collapsed.

Value type
URL

Possible target(s)

none

expandedicon

The icon to indicate an itemwith children is expanded.

Value type
URL

Appendix C: About Style Cc—23
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Possible target(s)

none

selectedlcon

The icon to indicate an itemw thout children is sel ected.

Value type
URL

Possible target(s)

none

unselectedlcon

The icon to indicate an itemw thout children is unsel ected.

Value type
URL

Possible target(s)

none

info
For the information widget used in several navigation systems.

Common properties

backgr oundCol or and backgr oundl mage

Possible targets
error

hel p

C—24

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix C: About Style

col or
fontFam |y
fontSi ze
fontStyle
f ont Vi ght

t ext Decor ati on

Possible targets:

error, help

Unique properties

none

downlcon

The icon for the button for going down.

Value type
URL

Possible target(s)

error, help

downlconGray

The icon for the button for going down in grayed out state.

Value type
URL

Possible target(s)

error, help

Appendix C: About Style Cc—25
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

typelcon

The icon to indicate the type of the information.

Value type
URL

Possible target(s)

error, help

uplcon

The icon for the button for going up.

Value type
URL

Possible target(s)

error, help

uplconGray

The icon for the button for going up in grayed out state.

Value type
URL

Possible target(s)

error, help

tab

The tab widget is in the collapsible list navigation system.

C—26 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Common properties
backgr oundCol or
backgr oundl mage
col or
font Fanmi |y
fontSize
fontStyle
f ont Wi ght

t ext Decorati on

Possible targets:

sel ected, unsel ect ed)

Unique properties
| ogo

The logo to be shown next to the tabs.

Value type
URL

Possible target(s)

none

selectedlmageleft

The image put on the left of the selected tab item.

Value type
URL

Possible target(s)

none

Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Cc—27

selectedlmageRight

The image put on the right of the selected tab item.

Value type
URL

Possible target(s)

none

unselectedlmageleft

The image put on the left of unselected tab items.

Value type
URL

Possible target(s)

none

unselectedimageRight

The image put on the right of unselected tab items.

Value type
URL

Possible target(s)

none

c—28 Appendix C: About Style
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Appendix D

Base Data Types

This section contains base data type definitions for the Sausalito architecture.

CAUTION! Do not reuse or redefine the base types listed above. If you modify
the definitions of the base types, it can cause a data collision where it might not
be clear which data type definition is used. If you need to extend the data type
definitions, append your vendor name to them, for example,

vendor _use. enmi | addr ess.

Scalar

Scal ar is any data.
<typedef nane="scal ar" type="re" data="".*$"/>

Word

Wor d is any non-whitespace data.
" /\[N

<t ypedef nane="word" type="re" dat a=
VtAn\r\v\f]+$"/>

Alphanum

Al phanumis any alphanumeric data.

<t ypedef nane="al phanunt type="re" dat a=""[A- Za- z0-
9] +$"/ >

D—2 Appendix D: Base Data Types
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Alphanum_plus

An al phanum pl us is alphanumeric data plus an approved subset of punctuation.

<t ypedef
name="al phanum pl us"
type="re"
dat a=""[A- Za-z0- 9. _-] +$"
/>

Int

A | nt is a signed integer.
<t ypedef nanme="int" type="re"
data=""(\-?[1-9][0-9]*)| (0)$"/>

Uint

A Ui nt is an unsigned integer.
<typedef name="uint" type="re"
data=""([1-9][0-9]*)]| (0)$"/>

Boolean

A Bool ean is empty or O for FALSE; any data for TRUE.

<t ypedef name="bool ean" type="re" data=".*"/>

Ipaddr

<t ypedef nane="i paddr" type="re"

Appendix D: Base Data Types D—3
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

data=""(([0-9])| ([1-9][0-9])| (1[0-9][0-9])|2[0-4][0-9]|25[0-5])\
-(([0-9]) [([1-9]1[0-9])| (1[0-9][0-9])|2[0-4][0-9]]25[0-5])\. (([O-
9])1 ([1-91[0-9])[(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-9])([1-
9][0-9])[(1[0-9][0-9])|2[0-4][0-9]|25[0-5])$%"

/>

Network

A net wor k defines a network number, such as 10. 9. 0. 0/ 16.

<t ypedef nane="net wor k" t ype:u re"

data=""(([0-9])|([1-9]1[0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\
(([0-91) 1 ([1-9]1[0-9])|(1[0-9]1[0-9])]|2[0-4][0-9]|25[0-5])\.(([O-
91)1([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\. (([0-9])[([1-
9”2-9])I(1[0-9][0 9])12[0-4][0-9]]|25[0-5])/([1-9]|[12][0-9]]|3[O-
2 "

/>

Email Address

The emmi | _addr ess is the address of the email user, for example, fred@cobalt.com.

<t ypedef
name="enai | _addr ess"
type="re"
data=""[a-zA-Z\-\ _\d\.]+\@a-zA-Z\-\ _\d\.]+$"
/>
Netmask

A net mask can be either a number from 1 to 32 or a dot-quaded IP mask.

<t ypedef name="net mask" type="re"

D—4 Appendix D: Base Data Types
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

data=""(([1-9])|([12][0-9])]|(3[O-

2]1) | ((0] 128] 192| 224 240| 248| 252| 254| 255)\ . O\ . O\ . 0) | 255\
. ((0] 128] 192| 224| 240| 248| 252| 254| 255)\ . O\ . 0) | 255\ . 255\

. ((0] 128] 192| 224| 240| 248| 252| 254| 255)\ . 0) | 255\ . 255\ . 255\
. ((0] 128| 192| 224| 240| 248| 252| 254| 255))) $"

/>

Fqdn

An f gqdn is the fully qualified domain name, for example, www. cobal t. com
<typedef name="fqgdn" type="re"
data=""([A-Za-z0-9] [A-Za-z0-9\-]*\.) +[A- Za-z] {2, 3} $"

/>
Hostname
A host nane is defined as follows:
<t ypedef name="host nane" type="re"
dat a=""[A-Za-z0-9] [A-Za-z0-9\ -] *(\.[A- Za- z0- 9] [A- Za- z0- 9\ -] *) * "
/>

Domainname

A domainname is defined as follows:

<t ypedef name="domai nnane" type="re"
dat a=""(l ocal domai n) | (([A-Za-z0-9] [A-Za-z0-9\-]*\.) +[A- Za-
z]{2,3})%"
/>
<t ypedef

name="passwor d"

type="re"

Appendix D: Base Data Types
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

dat a="~["\ 001-\ 037\ 177]{3, 16} $"

/>

D—6 Appendix D: Base Data Types
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Appendix E

Cobalt System Configuration Protocol

Chapter Contents

Example Headers

Messages

CSCP Command Summary
Common Syntax Definitions
CSCP Commands

This appendix describes the details of the Cobalt System Configuration Protocol (CSCP). For
an overview of how CSCP works with the rest of Sausalito, see Chapter 5, Introducing The
Cobalt Configuration Engine . CSCP is enables communicaiton between a client application

and CCE or when CCE communicates with a handler.

When a CSCP session begins, the server starts the connection by transmitting a CSCP header

to the client. This header is described below in lazy-BNF notation.

Header ::= ldentifier-Line ObjectlD Line? Ready-Line
Identifier-Line ::= "100 CSCP/" version nl

Obj ectI D-Line ::="101 EVENT " object-id "." (nanespace ".")?
property

Ready-Line ::= "200 Ready" nl

A handler is triggered because of some change in an object. The Obj ect | D- Li ne tells you

the name of the Obj ect | D and the namespace.

NOTE: Obj ect| D-Li ne and At tri but e- Li ne are only meaningful in the
context of CCED communicating with an event handler.

E—2

Appendix E: Cobalt System Configuration Protocol

Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Example Headers

When CCE connects to a client or a handler, the header is sent.This is an example header that
a Ul client would expect to see when connecting to CCED:

100 CSCP/ 1.0
200 Ready
These are example headers that an event handler would expect to see when CCED connects to
the handler:
100 CSCP/ 1.0
101 Event 5._CREATE
200 &
100 CsCP/ 1.0
101 Event 27.Foo. enabl e
200 X
100 CSCP/ 1.0

101 Event 93..enable

200 &

Messages

This section explains patterns repeatedly occur in CSCP. All lines sent by the server consist of
a numeric code and a set of arguments. The first digit (hundreds place) of the code defines
whther the message is informational, a warning, a success or a failure.

100- 199
200- 299
300- 399
400- 499
900- 999

I nf ormat i onal
Success
War ni ng
Fai l ure

System i ssued nmessage (can be sent at any tine)

Appendix E: Cobalt System Configuration Protocol E—3
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

A response is made up of any number of 100 or 300 lines, finishing with a single 200 or 400
line. Response codes are shared between different commands. However, messages with the
same code always share the same syntax, regardless of the command the message is
responding to.

The lowest 30 codes of each 100 and 300 block and the lowest 10 codes of each 200 and 400
block is reserved for common messages. Codes outside those blocks are allocated as needed.
The following is a more detailed breakdown of allocations:

"100 CSCP/" version

"101 EVENT oid. event"

"102 DATA " key " =" val

"103 DATA " key " =" val (uncommtted)

"104 OBJECT " oid

"105 NAMESPACE " nanmespace

"106 INFO " nsg

"107 CREATED'

"108 DESTROYED'

"109 SESSIONID " session-id-string

"110 CLASS " cl assnane

111-119 : reserved

120-129 : reserved for protocol headers

130-199 : allocated for conmands

"200 READY"

"201 "

"202 GOODBYE"
203-209 : reserved

210-299 : allocated for commands

"300 UNKNOWN OBJECT " oid
"301 UNKNOWN CLASS " cl ass
"302 BAD DATA " oid " " key " " value

E—4 Appendix E: Cobalt System Configuration Protocol
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

"303 UNKNOWN NAMESPACE " nanespace
"304 PERM SSI ON DENI ED' reason
"305 WARN " nsg

"306 ERROR " nsg

"307 QUT OF MEMORY"

308-329 : reserved

330-399 : allocated for commands

"400 NOT READY"
"401 FAIL"

"402 BAD COMVAND'
"403 BAD PARAMETERS'
404- 410 : reserved

420-499 : allocated for commands

"998 SHUTTI NG DOMN'
"999 ENG NE ON FI RE"

CSCP Command Summary

This is the total set of CSCP commands:
Table 6—4 CSCP commands

Command Description

AUTH Authenticates as a user, to get that user’s access privileges (starts a new
session)

AUTHKEY Authenticates to an already existing session

ENDKEY Expire the current sessi oni d

WHOAMI Returns the O D of the currently authenticated user

BYE Closes the connection

COMMIT Triggers any postponed handler activity

Appendix E: Cobalt System Configuration Protocol E—5
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Table 6—4 CSCP commands

Command Description

CREATE Creates a new object of a certain class

DESTROY Destroys an object

FIND Finds all objects that match a given criteria

GET Gets all properties of a certain object.

NAMES Lists nanmespaces associated with a class (for example, services).
CLASSES Lists all classes

SET Sets the properties of a certain object.

These additional commands are available in handler mode, that is, when the CCED is
communicating with a handler:

Table 6—5 Additional CSCPcommands for handler mode

Command Description

BADDATA Reports that an unrecognized attribute or value was passed
INFO Report a piece of information

WARN Report a warning or error

See Chapter 5 for the Perl, C, and PHP libraries of CSCP commands.

Common Syntax Definitions

Syntax for commands is described in lazy-BNF notation, that is, it is similar to BNF, but is
human readable.

sp ::=[\t]+ (any nunber of whitespace characters)

nl ::="\n

CLASSNAME ::= "SITE" | "USER' | "GROUP" | "MAILLIST"
al phanuneric_string ::= [A-Za-z0-9_]+

quoted_string ::= "\"" [A\"]* "\""

stringvalue ::= quoted_string | al phanumeric_string

KEY ::= stringval ue

E—6 Appendix E: Cobalt System Configuration Protocol
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

VALUE ::= stringval ue

QD ::= stringval ue

CSCP Commands

The AUTH Command

The aut h command authenticates the client to have the permissions of the specified user. To
re-AUTH to the default (anonymous) user, specify user nane and password as blank strings

(HH)'
Syntax:
"AUTH' sp USERNAME sp PASSWORD nl

USERNAME is the user’s username.
PASSWORD is the user’s password (unencrypted).

Return values: 109, 201, 401

The AUTHKEY Command

The aut hkey commands authenticates to an existing session, assuming that sessions’si d and
privileges.

Syntax:
"AUTHKEY" sp USERNAME sp SESSI ON- KEY nl

SESSI ON- KEY is an alphanumeric string that uniquely identifies a session-user pair.

Return values: 109, 201, 401

The ENDKEY Command

The endkey command alerts the server to immediately expire the current sessi oni d, and
not allow it as a parameter to aut hkey.

Appendix E: Cobalt System Configuration Protocol E—7
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Syntax:
" ENDKEY" nl

Return values: 201

The CREATE Command

The cr eat e command takes a class name and a list of attributes, and creates a new object of
that type.

Syntax:
" CREATE" sp CLASSNAME (sp KEY sp "=" sp VALUE)* nl

Informational responses:104
Warning responses: 301, 302, 303, 304

Return values: 201, 401

The DESTROY Command

The dest r oy command takes an oid and destroys the object.

Syntax:
" DESTROY" sp oid

Informational responses: 300, 304

Return values: 201, 401

The SET Command

The set command modifies the attributes of an existing object.

Syntax:
"SET" sp OD ("." NAMESPACE)? (sp KEY sp? "=" sp? VALUE)* nl

Warning responses:300, 302, 303, 304

E—8 Appendix E: Cobalt System Configuration Protocol
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

Return values: 201, 401

The GET Command

The get command returns all of the current attributes for the specified object. In the face of
transactions (such as a handler s view of the ODB), get will return both the previous state
and the current state, in that order. There are two i nf 0 messages to denote that an object was
just created (has no previous state) or just destroyed (has no current state).

Syntax:
"GET" sp OD ("." NAMESPACE)? nl

Informational responses: 102, 103, 107, 108
Warning responses: 300, 303

Return values:201, 401

The COMMIT Command

The conmi t command triggers any deferred activity.
Syntax:
"COMMIT" nl
Informational responses: 106
Warning responses:305

Return values: 201, 401

The NAMES Command

The names command returns a list of all defined namespaces for a class.

Syntax:
"NAMES" sp (O D] CLASSNAME) nl

Appendix E: Cobalt System Configuration Protocol E—9
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Informational responses: 105
Warning responses: 300, 301

Return values: 201, 401

The CLASSES Command

The CLASSES command returns a list of all defined classes.
Syntax:

"CLASSES" nl
Informational responses: 110

Return values: 201

The FIND Command

The f i nd command searches through object space to find all object of a given class that
match a criteria.

Syntax:
"FIND" sp CLASSNAME (sp ("SORT"|"SORTNUM") sp SORTKEY)?
(sp KEY sp? "="sp? VALUE)* nl

Fi nd searches within the set of objects that belong to class CLASSNAME. Fi nd finds all of the
objects of that class whose properties match the properties set forth in the KEY- VALUE list.
KEY may be of the form PROPERTY or NAMESPACE. PROPERTY.

If the SORT option is specified, the objects are returned in order, sorted alphanumeric ally
from lowest to highest according to the value of the SORTKEY property of each object.
SORTKEY may be of the form PROPERTY or NAMESPACE. PROPERTY.

If the SORTNUMoption is specified, the objects are returned in order as with the SORT option,
except that the objects are sorted in numeric order, that is, 9 < 10, as opposed to alphanumeric
order, that is, 9 > 10, because 9 comes after 1.

E—10

Appendix E: Cobalt System Configuration Protocol

Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

SORTNUMis capable of handling the sorting of integers (11), floating point numbers
(12.54), and version numbers (v1.5.3.27). Version numbers are special numbers that must
start with the letter v . They differ from floating point numbers in the sense that every group
of digits within the version numbers is compared like an integer. For example:0.15 is less than
0.2 (floating point numbers), but v0.15 is greater than v0.2 (version numbers).

Informational responses: 104
Warning responses:301

Return values: 201, 401

The WHOAMI Command

Syntax:
"WHOAMI" nl

If the session is currently authenticated, whoami returns the OID of the user object that the
connection is currently authenticated as. If the connection is not authenticated, or is
authenticated as "" (anonymous), the OID returned will be - 1.

Informational responses: 104

Return values: 201

The BYE Command

The Bye- Condi ti on field is optional, and is ignored unless CCEd is talking to an event
handler, that is, in handler mode.

In a handler context, if the "Bye-Condition" is omitted (or if the handler exits without issuing
a "BYE" command), the handler is assumed to have failed (for example, as if the handler had
issued the command "BYE FAIL").
Syntax:
"BYE" Bye-Condition? nl
Bye-Condition ::= (Bye-Success | Bye-Failure | Bye-Defer)
Bye- Success ::= " SUCCESS"

Appendix E: Cobalt System Configuration Protocol E—11
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Bye-Failure ::= "FAlL"
Bye- Def er ;.= "DEFER"

Return values: 202

CSCP Handler Extensions

The BADDATA Command

The BADDATA command is used by a handler to report that one of the attributes or data in the
current operation isn’t valid for the specified class and namespace.

Reporting bad data is left to the discretion of the handler. Handlers can choose to not flag
BADDATA errors if they want to facilitate future extensions to a namespace.

Syntax:
"BADDATA" sp O D sp KEY sp VALUE nl

Return value: 201

The INFO Command

The | NFOcommand is used by a handler to report some piece of info for use by the front-end.
The parameter MESSAGE is a single string formatted as listed below. This format allows easy
parsing by internationalization software at higher levels.

Syntax:
"I NFO' sp MESSAGE nl

MESSAGE ::= domain ":" tag (<sp>+ varlname <sp>* "=" <sp>* varlval)*

Variable names must follow all the same guidelines as a property name, and variable values
must be alphanumeric or a properly quoted and escaped string.

Return value: 201

E—12 Appendix E: Cobalt System Configuration Protocol
Beta Draft 8. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved .

The WARN Command

The WARN command is used by a handler to report some piece of information for use by the
front-end. See | NFOcommand for information on MESSAGE parameter format.

Syntax:
"WARN' sp MESSAGE nl

Return value: 201

Built-in Properties of Objects

Using the get command, a hash is returned from the Object Database (ODB). In addition to
ordinary properties, it also has these magic properties inserted in it:

OID The unique identifier number for the object

CLASS The class of the object

NAMESPACE The namespace of the the subset of properties retrieved

Appendix F

CCE Class Definitions

Chapter Contents

Programming Conventions
CCE Classes
System
Network
Route
Workgroup
Workgroup Defaults
User
UserDefaults
MailList
User.Email
System.Email
System.FTP
System.Snmp
DhcpParam
DhcpStatic
DhcpDynamic

NOTE: Inalater draft, properties will be labeled optional and required.

F-2 Appendix F: CCE Class Definitions
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

CAUTION! The class definition properties are subject to change. Check this
section for updates.

Programming Conventions

The class definitions use the following conventions:

¢ All class names have thefirst character capitalized. for example, Syst em If they have
more than one word, the first character of all words is capitalized, for example,
Mai | Li st .

* Namespace names follow the same rule as class names.

¢ All property names start with an al lowercase first word. If a property name has more
than one word, the first characters of the second word onwards are capitalized. For
example, gat eway and st yl ePr ef er ence are valid property names.

CCE Class Definitions

System

Syst em stores all system-wide configuration settings. There should be exactly one Syst em
object in every functional system.

Tabl e C— Net wor k

Properties Definition

host nane the name of the host (first half of the Fully Qualified Domain Name)

donai nnane the domain name of the host (second half of the Fully Qualified
Domain Name)

gat eway IP address of the default gateway

DNS colon (:) delimited list of DNS server | P addresses

notify_email Address to whom to email emergency reports

time_region Used by Ul to select timezones

Appendix F: CCE Class Definitions

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Tabl e C4 Net wor k

Properties

Definition

time_country

Used by Ul to select timezones

ti ne_zone

Time zone to use

r eboot

Set to true to enable rebooting the machine, and is cleared whenever CCE is
restarted.

hal t

Set to true to halt the machine. Cleared when restarted

Network

Net wor k stores settings relevant to the basic (non-virtual) TCP/IP network interfaces.

Tabl e C2 Net wor k

Properties

Definition

devi ce

Usually either et hO or et h1

i paddr

IP address for this interface

net mask

netmask for thisinterface

Medi a Address
Cont r ol

MAC address of thisinterface

enabl ed

Trueto bring the interface up, false to take it down

boot proto

Either DHCP, none, or LCD

Route

r out e used to add additional gateways for some routes.

Table C-3 route

Properties

Definition

t ar get

the destination subnet or host to perform routing

net mask

netmask of target subnet

gat eway

| IP address of gateway for this subnet

devi ce

device (defaults to the device gateway is within)

F-4 Appendix F: CCE Class Definitions
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Workgroup

wor kgr oup stores all workgroup-specific settings.
Tabl e C—4 wor kgr oup

Properties Definition
enabl ed determinesif the workgroup enabled (Boolean)
menber s colon- delimited list of usernames who are members of this group
name the unique name of this workgroup (alphanumeric)
quot a disk space quotafor this workgroup (integer)

Workgroup Defaults

wor kgr oup def aul t s storesworkgroup defaults

Table C-5 wor kgroup defaults

Properties Definition

quot a allowed disk space (in megabytes)

User
User storesall user-specific settings.
Table C-6
Properties Definition
enabl ed Used to enable or disable the users account
ful | Name The full comment name of the user
| ocal ePreference Used exclusively by the Ul
nane The unique name of this user (alphanumeric)
password The user's plaintext password
sor t Name The string to use when sorting users
shel | Path to the user's shell

site The name of the site to which the user belongs

Appendix F: CCE Class Definitions

Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Table C—-6

Properties Definition

siteAdninistrator flag: istheuser asite administrator?
styl ePreference Used exclusively by the Ul

syst emAdmi ni strato
r

f 1 ag: isthe user a system administrator?

UserDefaults

User Def aul t s stores user defaults.

Table C-7 User Defaults

Properties Definition
quot a allowed disk space (megabytes)
user NaneGenMode The modefor user name generation. It canbefirstinitLast,first
orlast.
MailList

Mai | Li st representsamailing list.

Table C-8 MailList

Properties Definition

nane alphanumeric name of the mailing list

password password for authenticating mail-admin commands
post Pol i cy Rules to restrict who can post to the list

moder at ed indicates that only moderators can post

any anybody can post

menber s only members can post

subPol i cy Rules to restrict who can subscribe to the list

cl osed only the admin or moderaters can subscribe users
open anybody can subscribe

F-6 Appendix F: CCE Class Definitions
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Table C-8 MailList

Properties Definition
confirm anybody can subscribe?, confirmation required for subscriptions
| ocal _recips "," delimited list of local usernames to receive mail
renote recips "," delimited list of remote usernames
nmoder at or The list moderator
group What group is this mailing list associated with (for quota purposes)
site Thisfield should aways be empty for Qube3
enabl ed Islist active? (Boolean value; default is true)
User.Email
User. Emai | determines email-specific properties
Table C-9
Properties Definition
enabl ed Determinesif email is enabled
al i ases List of email aliases for this user
forward Address to forward this user's email
vacation Is user on vacation? What's the message?
ur | url of Ul for configuring email properties
apop Whether APOP is active for this user
System.Email
System Emai | lists System specific email properties
Table C-10
Properties Definition
accept For Array[Host | Domai n] for which to accept mail.
deni ed Array[Host | Domai n] for which to deny mail.

rel ayFor Array[Host | Donai n] torelay for

Appendix F: CCE Class Definitions F-7
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

Table C-10

Properties Definition

routes Hash[Domai n: Domai n] redirection

masqgDon®i n Domain to masaquerade as

smart Rel ay Host to forward mail to

del i ver yMode Alter(‘interactive’,background','queue’) Controls how email is delivered.
privacy Boolean representing high email security (Expn/Vrfy).
maxMessagesSi ze Integer (In megabytes) largest size email to accept and send. 0 to disable.
queueTi me Alter (‘daily’,'half-daily'... and others) Controls how often mail is queued per

cron intervals.)
System.FTP

System.FTP determines FTP settings.

Table C-11
Properties Definition
enabl ed determines whether FTP is enabled
anon_en determines whether anonymous FTP is enabled
maxuser s number of simultaneous users who can be logged in
quot a quota for anonymous files
url URI of Ul for configuring FTP properties

System.Snmp

SNMP settings are settings for Simple Network Mail Protocol.
Table C-12 SNMP

Properties Definition
enabl ed determines whether SNMP server is enabled.
readComuni ty read-only SNMP community

readWiteCommunity theread and write SNMP community

F-8 Appendix F: CCE Class Definitions
Beta Draft 9. Copyright ' 2001. Cobalt Networks, Inc. All Rights Reserved.

DhcpParam

DhcpPar am are parameters for DHCP clients.
Tabl e C43DhcpPar am

Properties Definition
enabl ed DHCPd on or off flag
domai nnane the domain name of the host (second half of the fully qualified
domain name (FQDN))
gat eway IP address of the default gateway
dns colon-delimited list of DNS server |P addresses.
net mask netmask for this network
| ease the maximum lease time in seconds
DhcpStatic

DhcpSt at i ¢ configures static address assignments.
Tabl e C24DhcpStatic

Properties Definition
i paddr IP address to assign to this mac address
mac Media Access Control (MAC) address to get the above |P Address

DhcpDynamic

DhcpDynani ¢ provides configuration for dynamic address range assignments

Tabl e C45DhcpDynami ¢

Properties Definition

i paddrlo the beginning of the range

i paddr hi the end of the range

	Acknowledgements
	I would like to acknowledge the following people who have been essential to writing this book: Ti...

	What’s New in this Document
	The following information was added to Beta Draft 9:
	• Chapter 5 {{XREF}} was enhanced and revised.

	The following information was added to Beta Draft 8:
	• Chapter 4, Internationalizing Sausalito, was added.
	• Appendix C, Style, was added.

	The following information was added to Beta Draft 7:
	• Appendix�F “CCE Class Definitions” was added.
	• Appendix A, User Interface Foundation Classes, was updated.
	• The FileName attribute in the package file has been removed.
	NOTE: If you have been using the FileName attribute, please remove it from your package files. Se...
	• Appendix�D, “Base Data Types” was added.
	• Appendix�E, “Cobalt System Configuration Protocol” was added.

	Chapter�1

	Introducing The Sausalito Architecture
	Introduction
	Cobalt completed its first Web server appliance software architecture in 1998 and began delivery ...
	Software developers and service providers now view the Web as the medium for delivering services....
	As appliances, these products are fundamentally more cost effective and easier to use than ‘pre-I...
	Cobalt recognized from the start that the user interface and underlying software architecture for...
	Sausalito is specifically designed for delivery of services through the web model. This model all...
	Sausalito is designed to provide a superb developer platform, with the following goals in mind.
	• Provide an extensible architecture enabling third-party developers to customize, modularize, an...
	• Provide an easy to understand environment for non-technical users. Sausalito masks the complexi...
	• Use open standards for quick development time and strong security. Sausalito is designed to run...
	• Provide flexibility to localize User interfaces into multiple languages quickly. Sausalito incl...

	Audience
	The audience for this document includes developers who create hardware or software applications t...

	About this Book
	{{need to update chapter titles}}
	This book contains the following sections:
	Chapter�2, “About The Sausalito Architecture,” provides a high-level tutorial of the components t...
	Chapter�3, “User Interface,” explains how the User Interface works with code samples and examples...
	Chapter�5, “Introducing The Cobalt Configuration Engine” describes the interaction between the un...
	Chapter�6, “Making Sausalito-Aware Applications,” describes the file structure you must use to cr...
	Appendix�A, “User Interface Foundation Classes” lists the methods in the User Interface Foundatio...
	Appendix�B, “Utility Classes” lists the methods for the Utility Classes.
	Appendix�D, “Base Data Types” lists the base data types used in Sausalito. You should be aware of...
	Appendix�E, “Cobalt System Configuration Protocol” describes the CSCP protocol.
	Appendix�F, “CCE Class Definitions” lists the properties of CCE classes.
	NOTE: This draft includes a subset of the set of final chapters and appendices that will be avail...

	Related Documents
	For information on using Sausalito, please see the Qube 3 User’s Guide, which is available at htt...

	Document Roadmap
	This roadmap tells you where to find information for specific tasks.
	Table�1–1 {{need to update this}}

	Conventions Used in this Guide
	Typographical Conventions
	Bold is used for emphasis, for example:
	Each UIFC page should have one and only one page object.

	Bold is also used for words found in the user interface, for example:
	test.xml is shown adjacent to Style.

	Italic font is used for variables, for example:
	require ::= string

	Italic font is also used for new terms when they are first used, for example,
	these widgets are manipulated from a PHP script by the developer.

	Courier is used for program names and code, and web resources, for example: CCE Auth command retu...
	char *cce_auth_cmnd
	http://www.cobalt.com/support/resources/manuals.html

	Programmatic Conventions
	The class definitions use the following conventions:
	• All class names have the first character capitalized. For example, System. If they have more th...
	• Namespace names follow the same rule as class names.
	• All property names start with an all lowercase first word. If a property name has more than one...

	Terminology
	Sausalito has its own unique terminology:
	Cobalt Configuration Engine (CCE): A general name for the entire configuration architecture.
	Cobalt System Configuration Protocol (CSCP): The protocol which connects the CCE client to the se...
	Event: A change in a property of a object within the database.
	Client: Aprogram using CSCP to request or change information.
	Handler: A program called by CCE to affect an event.
	Cobalt Configuration Engine daemon (cced): The server process which handles incoming connections ...
	Chapter�2

	About The Sausalito Architecture
	This chapter provides a tutorial-style overview of the Sausalito architecture. It describes the b...
	The Appliance Concept
	When designing software for a general purpose server, the designers must put as few restrictions ...
	The Sausalito software architecture is an answer to the appiliance concept. Sausalito allows Coba...
	This separation of interface and implementation is a cornerstone of reusable and reliable softwar...
	Figure�2–1 provides a basic view of Sausalito architecture. The interface provides the glue betwe...
	Figure�2–1 Overview of Sausalito

	Abstraction of the System into Objects
	The first step towards separating the interface from the implementation is to separate the data f...
	This provides developers a flexible way to define new configuration items to the system, as well ...
	Figure�2–2 Adding Classes and Objects to Sausalito

	Storing the Objects
	Once we have well-defined objects that can accurately represent the system, we need to define how...
	The Cobalt Object Database (CODB) is provided as a place to store objects. It is not a database i...
	Objects can be stored, retrieved, modified, and destroyed, all without the user interface having ...
	Figure�2–3 Adding CODB

	Manipulating the Objects
	Now that we have objects that can be stored, created and destroyed, we need to define a mechanism...
	CSCP provides primitives to read, write, create, destroy, and search for objects. To make accessi...
	Figure�2–4 Connecting the UI to CCE and CODB

	Extending the Objects
	Now that application packages can export their configuration data via CODB classes, other softwar...
	There is one more problem, however. A good abstraction of the object knows nothing of the user in...
	CODB provides the ability to extend a class with a namespace. A namespace is a set of properties,...

	Watching for Changes
	At this point, we have the Cobalt Configuration Engine (CCE) running a database (CODB) which stor...
	Application packages can register via configuration files to be notified when certain events occu...
	Now that we can register handlers, our software package can create a handler for any events about...

	Actuating the Changes
	When an event is triggered, CCE steps through the list of handlers for that event, and runs each ...
	It is the responsibility of each handler to make the appropriate changes to the system configurat...
	Figure�2–5 Making changes to the system

	Modularity – Doing Your Own Thing
	At every stage of Sausalito, concern has been given to retain modularity. It is the goal of the a...

	What Sausalito is Not
	Sausalito is not a generic data-store. It is not a place for applications to store their data. It...
	CCE is not a place to store user-interface definitions. CCE should know as little as possible abo...
	Sausalito is not a mechanism for a user interface to trigger system events . The user interface s...
	Sausalito is not a replacement for other security mechanisms. While Sausalito tries to be secure ...
	Sausalito is not a replacement for a good backups. Much of the system's data is stored in files o...
	Chapter�3

	User Interface
	Sausalito is Cobalt’s first fully open programming interface. It is designed to enable third- par...
	• Add menu items and buttons
	• Change the look and feel of the user interface style
	• Build user interfaces and web pages that are consistent with the Qube 3 system

	How the Menu System Works
	The menu system in the Cobalt administrator’s user interface is a dynamic structure. It is genera...
	The structure and contents of the menu is generated from XML files, located under the /usr/sausal...

	Adding a New Menu Item
	The example below demonstrates how to add a menu, complete with a menu item, to the administrator...
	helloMenu.xml
	<item
	id="sample_helloworldmenu"
	label="Hello World App"
	description="This menu contains the Hello World application">
	<parent id="base_administration" order="100"/>
	</item>

	Menu Attributes
	Each menu has several attributes:
	• id: a system-unique identifier for this menu entity;
	• label: the string to display in the menu
	• description: the help text to display in the help area when this menu is moused over
	NOTE: see “Using Unique Names” on page�3–3.

	Each menu has at least one parent, each of which have several attributes:
	• id: the system-unique identifier of the parent menu
	• order: the relative position in which this menu item will be placed; higher number ranking indi...

	The parent defines the point in the menu system at which this menu item will appear. Now that we ...
	hello.xml
	<item
	id="sample_helloworld"
	label="Hello"
	description="This item says hello to the world"
	url="/sample/hello/helloWorld.php">
	<parent id="sample_helloworldmenu" order="0"/>
	</item>
	Like a menu bar, which is just a special menu item, menu items have id, label, and description at...

	Using Unique Names
	You must use unique names for triturates to avoid name conflicts. Cobalt recommends that you choo...

	How the Libraries Work
	The Cobalt UI libraries, which are written in PHP4, are composed of a set of object classes and u...
	The object classes, called the UIFC (User Interface Foundation Classes) define objects such as bu...
	NOTE: See Chapter 4 for information on internationalization, coming soon in a future draft.

	The utility functions provide pre-packaged functionality that is commonly needed by web- based UI...
	A Further Example
	We've already shown some examples of adding a menu, so let's put all the pieces together and see ...
	menu/helloMenu.xml
	<item
	id="sample_helloworldmenu"
	label="Hello World App"
	description="This menu contains the Hello World application">
	<parent id="base_administration" order="100"/>
	</item>

	menu/hello.xml
	<item
	id="sample_helloworld"
	label="Hello"
	description="This item says hello to the world"
	url="/sample/hello/helloWorld.php">
	<parent id="sample_helloworldmenu" order="0"/>
	</item>

	web/helloWorld.php
	<html>
	<body bgcolor="#ffffff">
	<h1> Hello, World! </h1>
	</body>
	</html>

	Makefile
	# Makefile for sample hello_world Sausalito application
	#
	# Adding a menu, menu item, and simple page
	VENDOR = sample
	APP = hello
	SAUSDIR = /usr/sausalito/
	MENUSRCS = menu/hello.xml menu/helloMenu.xml
	MENUDIR = $(SAUSDIR)/ui/menu/$(VENDOR)/$(APP)
	WEBSRCS = web/helloWorld.php
	WEBDIR = $(SAUSDIR)/ui/web/$(VENDOR)/$(APP)
	all:
	# nothing to do, yet
	install: all menu-inst web-inst
	menu-inst: $(MENUSRCS)
	mkdir -p $(MENUDIR)
	install -o root -g root -m 644 $(MENUSRCS) $(MENUDIR)
	web-inst: $(WEBSRCS)
	mkdir -p $(WEBDIR)
	install -o root -g root -m 644 $(WEBSRCS) $(WEBDIR)
	Putting all of these together creates the web page shown in Figure�3–1 on page�3–6.
	Now, we can take advantage of the UI libraries. It might seem odd that the next example is, in fa...

	web/helloWorld.php
	<?php
	// PHP file to display "Hello, World"
	include("ServerScriptHelper.php");
	$servhelp = new ServerScriptHelper();
	$factory = $servhelp->getHtmlComponentFactory("base-am");
	$page = $factory->getPage();
	print($page->toHeaderHtml());
	$label = $factory->getLabel("Hello, World!", false);
	print($label->toHtml());
	print($page->toFooterHtml());
	?>
	Putting all these files into place results in the screen in Figure�3–1.
	Figure�3–1 Hello World in the Cobalt Menu

	The User Interface Style
	How Styles Work
	The UI styles are defined in Style definition files. The Style definition file contains all the c...

	Changing the User Interface Style
	Style interacts with the User Interface Foundation Classes (UIFC) that are described in Appendix ...
	Sausalito ships with one style file: trueBlue.xml. You can modify this file and save it as your o...
	IMPORTANT! You must make a copy of trueBlue.xml. Modifying it directly without making a backup is...

	1. Change directories to /usr/sausalito/ui/style.
	2. Create a directory with your vendor name. Type:
	mkdir vendor_style

	3. Copy the style file, trueBlue.xml, to vendor_style.xml.
	4. Move vendor_style.xml to the vendor_style directory.
	5. Add any graphics or other files needed for your style file.
	The following is an example of modifying the trueBlue.xml file. In this example, the following UI...
	• trueBlue.xml was copied and saved to test.xml in the test_style directory; the word test is sho...
	• The color value for the aLinkColor value was changed to #0033CC.
	• The title alignment was changes from left to right by modifying the tabAlign value.
	• The font size was changed by modifying <property name="fontSize" value="12pt"/> to <property na...

	Similarly, changes were made to the background and divider colors of the table cells, and to the ...
	Below is an example of a modified style file.
	Figure�3–2 Modified Style File

	Making Other Style Changes
	You can make other style changes in addition to the ones shown in Figure�3–2 by making further mo...
	You can substitute your logo for Cobalt’s logo by searching for the line:
	<property name="logo" value="/libImage/topLogo.gif"/>

	and putting the .gif file for your logo in place of topLogo.gif.
	Chapter�4

	Internationalizing Sausalito
	i18N: A World Tour
	This chapter explains how to internationalize and localize Sausalito.
	Terminology
	This chapter uses two terms: internationalization, which is referred to as i18n, and localization...
	Internationalization refers to the operation by which a set of programs are made aware of and are...
	Localization means the operation by which, in a set of programs already internationalized, the de...

	How Internationalization Works
	The Sausalito architecture provides a simple-to-use interface into a database of localized string...
	Like GNU gettext, the Sausalito i18n library allows developers to create their own databases of l...
	• Strings fetched from the library are subject to an interpolation process, in which user- suppli...
	• Access to a set of routines for properly escaping the fetched strings for use in web applicatio...
	• Automatic negotiation of the best possible locale, from a preference-ordered list of locales.

	Using Domains, Tags, and Locales
	The Sausalito i18N library manages a database of localized strings. Each application or module is...
	When an application retrieves a message from the i18N database based on the message's domain and ...
	Domains
	A domain is a grouping for a similar set of resources, for example, the sendmail package can be a...
	Developers retrieve message strings from the I18N database by specifying both the domain and the ...

	Tags
	A tag identifies a text string within a domain of strings for used in interpolation and I18N. The...

	Locale
	Locales are specified by strings that start with an ISO-639 two-letter language code, followed by...
	In summary, the grammar for a locale identifier is:
	locale_id := lang-code ['_' country-code ['_' variant-code]]

	where lang-code, country-code, and variant-code are all alphanumeric codes defined in ISO-639 and...
	Following are some example locale identifiers:
	• en: Generic english
	• en_US: English, as spoken in the United States
	• ja_JP_EUC: Japanese, as spoken in Japan, the EUC variant.

	When the i18n library is initialized by an application, a comma-delimited list of locales is supp...

	How Strings Are Added to the System
	Adding new strings to the system in a three-step process:
	1. A new .po file is created. This .po file defined all the message strings for one domain and on...
	2. The .po file is compiled into an .mo file using the msgfmt tool.
	3. The .mo file is placed in the appropriate directory beneath /usr/share/locale/locale/LC_MESSAGES.

	Using Interpolation
	Whenever a string is fetched from the i18n library, it is subject to a process called interpolati...
	As a quick example, if the following string were stored in the i18n message string database:
	"Hello, my name is [[VAR.name]]."

	The i18n_get function is called such that the user supplied variable name was set to Bob, the fol...
	"Hello, my name is Bob."

	Interpolation Rules
	Every time a localized string is retrieved from the I18N database, it undergoes interpolation acc...
	Rule 1. The string is subdivided into a list of tokens according to the following grammar:
	string := token*
	token := (text | tag)
	tag := “[[“ domain “.” tagname var* “]]”
	var := “,” key “=” value.
	text := escaped-string
	domain := escaped-string
	tagname := escaped-string
	key := escaped-string
	value := escaped-string
	NOTE: The tag grammar interpolates the tag configuration in this format and substitutes variables...

	Rule 2. Strings are unescaped according to the following rules:
	“\n” -> newline
	“\b” -> backspace
	“\a”
	“\f” -> formfeed
	“\n” -> newline
	“\r” -> return
	“\t” -> tab
	“\v” -> vertical newline
	“\(char) -> literal character

	Rule 3. Tags are subject to the following expansion rules:
	If the domain equals VAR, then variable expansion occurs. The variable specified in tagname is lo...
	If the domain is not equal to VAR, than the domain token is interpreted as the name of a i18n dom...
	Rule 4. The expanded unescaped tokens are reassembled into a single internationalized string.

	The i18n Interface
	Application developers use the following interface to fetch properly interpolated and escaped str...
	The i18n object performs it's own memory management on strings that it returns. When the I18n obj...
	The i18n library is a C library, but Perl and PHP bindings are provided in addition to the C inte...
	The I18n C-language interface
	The function prototypes for the C-language interface are in the following include file:
	/usr/sausalito/include/cce/i18n.h

	The link library for i18n is in these directories:
	/usr/sausalito/lib/libi18n.a (library for static linking)
	/usr/sausalito/lib/libi18n.so (library for dynamic linking)

	The function interface for the C-language interface follows.
	i18n_handle *i18n_new (char *domain, char *locales)
	Summary: constructs a new I18n object, and returns a pointer to it.

	Parameters
	domain: identifies the default domain to use for operations where domain is omitted.
	locales: a comma-delimited list of locale identifiers, listed in order of preference. This list o...
	Returns: NULL for failure. Otherwise, returns a handle to a newly constructed i18N object.
	void i18n_destroy (i18n_handle *handle)
	Summary: destroys an i18n object, cleaning up all memory allocated by the i18n object.

	Parameters
	handle: the i18n object to be destroyed.
	Returns: Nothing.
	i18n_vars * i18n_vars_new (void)
	Summary: constructs a new object used to storing an associative array of variables for use by the...

	Parameters
	None
	Returns: A pointer to a new i18n_vars object (a GHashTable).
	void i18n_vars_add (i18n_vars *v, char *key, char *value)
	Summary: adds a new key-value pair to the i18n_vars object. Copies of both the key and value are ...

	Parameters
	v: a pointer to a valid i18n_vars object key -- a null-terminated string indicating the variable ...
	value: a null-terminated string indicating the value of the named variable.
	Returns: Nothing.
	void i18n_vars_destroy (i18n_vars *v)
	Summary: destroys an i18n_vars object, and frees all memory associated with it.

	Parameters
	v: the pointer to the i18n_vars object to destroy
	Returns: Nothing.
	char *i18n_interpolate (i18n_handle *h, char *str,
	i18n_vars *vars)
	char *i18n_interpolate_html (i18n_handle *h, char *str, i18n_vars *vars)
	char *i18n_interpolate_js (i18n_handle *h, char *str,
	i18n_vars *vars)
	Summary: These three functions provide direct access to the interpolation functionality within th...
	The i18n_interpolate_html function performs an additional escaping expansion on the string it ret...
	The i18n_interpolate_js function performs additional escaping, similar to the i18n_interpolate_ht...

	Parameters
	h: a pointer to a valid i18N_handle object.
	str: a null-terminated string to subject to interpolation, as described above.
	vars: a pointer to a valid i18n_vars object. This object will be used to find values for all vari...
	Returns: A null-terminated string containing the results of interpolation on the string str. Opti...
	char *i18n_get(i18n_handle *i, char *tag, char *domain,
	i18n_vars *vars);
	char *i18n_get_html(i18n_handle *i, char *tag, char *domain,
	i18n_vars *vars);
	char *i18n_get_js(i18n_handle *i, char *tag, char *domain,
	i18n_vars *vars);
	The _get functions are identical to the _interpolate functions, except that the message identifie...

	char *i18n_strftime(i18n_handle *i, char *format, time_t time);
	char *i18n_get_datetime(i18n_handle *i, time_t t);
	char *i18n_get_date(i18n_handle *i, time_t t);
	char *i18n_get_time(i18n_handle *i, time_t t);
	Summary: these four functions get the time in the correct format for the current locale. Given a ...

	Parameters
	i18n: the current i18n object.
	format: the format to print the string in: %x, %X, and %C are useful.
	t : The epochal time to format.
	Returns: A pointer to a string formatted to the specified time

	The i18n PHP Interface
	Description: Constructor
	Syntax: $i18n = new i18n (domain, languages)

	Parameters
	domain: sets the default domain to use for interpolation when domain is not explicitly specified.
	langs: a comma-delimited list of supported locales specified in order of preference, for example,...
	Returns: a new i18n object.

	Object Methods
	function i18N($domain = "", $langs = "")
	Description: constructor

	Parameters
	domain: a string that describes the domain
	langs: an optional string that contains a comma separated list of preferred locale. Most importan...
	function get($tag, $domain = "", $vars = array())
	Description: get a localized string

	Parameters
	tag: the tag of the string. Identical to the msgid string in the .po file
	domain: the domain of the string in string. Identical to the .po or .mo file name without the ext...
	vars: a hash of variable key strings to value strings. Optional. If the hash contains "name" => "...
	Returns: a localized string if it is found or the tag otherwise.
	function getJs($tag, $domain = "", $vars = array())
	Description: get a localized string and encode it into JavaScript-friendly encoding

	Parameters
	domain: the domain of the string in string. Identical to the .po or .mo file name without the ext...
	vars: a hash of variable key strings to value strings. Optional. If the hash contains "name" => "...
	Returns: a JavaScript-friendly localized string if it is found or the tag otherwise.
	function getHtml($tag, $domain = "", $vars = array())
	Description: get a localized string and encode it into HTML friendly encoding

	Parameters
	tag: the tag of the string. Identical to the msgid string in the .po file
	domain: the domain of the string in string. Identical to the .po or .mo file name without the ext...
	vars: a hash of variable key strings to value strings. Optional. If the hash contains "name" => "...
	Returns: a HTML friendly localized string if it is found or the tag, otherwise.
	function interpolate($magicstr, $vars = array())
	Description: get a localized string out of a fully qualified tag

	Parameters
	magicstr: the fully qualified tag of the format: "[[" . <domain> . "." . <tag> (. "," . <key> . "...
	vars: a hash of variable key strings to value strings. Optional.
	Returns: a localized string or magicstr if interpolation failed.
	function interpolateJs($magicstr, $vars = array())
	Description: get a localized string out of a fully qualified tag and encode it into JavaScript- f...

	Parameters
	magicstr: the fully qualified tag of the format: "[[" . <domain> . "." . <tag> (. "," . <key> . "...
	vars: a hash of variable key strings to value strings. Optional.
	Returns: a JavaScript-friendly localized string or magicstr if interpolation failed.
	function interpolateHtml($magicstr, $vars = array())
	Description: get a localized string out of a fully qualified tag and encode it into HTML- friendl...

	Parameters
	magicstr: the fully qualified tag of format "[[" . <domain> . "." . <tag> (. "," . <key> . "="
	vars: a hash of variable key strings to value strings. Optional
	Returns: a HTML-friendly localized string or magicstr if interpolation failed.
	function getProperty($property, $domain = "", $lang = "")
	Description: get a property value from the property file /usr/share/locale/<locale>/<domain>.prop...

	Parameters
	property: the name of the property in string
	domain: the domain of the property in string. Optional. If not supplied, the one supplied to i18N...
	langs: an optional string that contains a comma separated list of preferred locale. Most importan...
	function getFile($file)
	Description: get the path of the file of the most suitable locale, for example, if /logo.gif is s...

	Parameters
	file: the full path of the file in question
	Returns: the full path of the file of the most suitable locale.
	function getAvailableLocales($domain = "")
	Description: get a list of available locales for a domain or everything on the system

	Parameters
	domain: i18n domain in string. Optional
	Returns: an array of locale strings.
	function getLocales($domain = "")
	Description: get a list of negotiated locales

	Parameters
	domain: i18n domain in string. Optional.
	Returns: an array of locale strings, the first one being to most important, and so on.
	function strftime ($format = "", $time = 0)
	Description: wrapper to strftime()

	Parameters
	format: the format parameter to strftime()
	time: the epochal time
	Returns: a strftime() formatted string

	Internationalization Example
	NOTE: Description and code coming soon
	This is the code used to create this menu.
	msgid "helloMenuItem"
	msgstr "Bonjour"
	msgid "helloMenuItem_help"
	msgstr "Ceci dit Bonjour a la Monde"
	msgid "helloMenu"
	msgstr "Bonjour Monde App"
	msgid "helloMenu_help"
	msgstr "Ceci est l'application Bonjour Monde"
	msgid "helloString"
	msgstr "Bonjour Monde!"
	Bon jour Monde!

	This is the Makefile.
	# Makefile for sample hello_world Sausalito application
	VENDOR = sample
	APP = hello
	SRCS = en fr
	I18NDIR = /usr/share/locale/
	all:
	# nothing to do for all
	install:
	for a in $(SRCS); do \
	DEST=$(I18NDIR)/$$a/LC_MESSAGES; \
	mkdir -p $$DEST; \
	msgfmt $$a/$(APP).po -o $$a/$(VENDOR)-$(APP).mo ; \
	install -o root -g root -m 644 $$a/*.mo $$DEST; \
	done
	Figure�4–1 Internationalized Hello World example

	Chapter�5

	Introducing The Cobalt Configuration Engine
	The Cobalt Configuration Engine (CCE)
	If the user interface is the face of the Sausalito Architecture, the Cobalt Configuration Engine ...
	CCE allows the development of a user interface that is truly flexible–it does not need to have in...
	1. Add configuration definitions to define new configurable applications (classes).
	2. Add configuration information to extend the number of configurable options for an existing app...
	3. Add to the list of things that CCE does when configurable options change (handlers).
	Basic Concepts
	CCE is broken into several logical units for easier understanding. The major pieces of the CCE sy...
	• The CCE daemon (cced), which handles incoming connections, sessions, and signals.
	• The Cobalt Object Database (CODB), which maintains the object store that reflects the current c...
	• The Cobalt System Configuration Protocol (CSCP), which is the protocol, or language, that CCE u...
	• The CCE client library (libcce), which provides routines for clients to better access CCE via C...
	• The event handlers, which are the programs that make CCE changes take effect on the system itself.

	The cced maintains the configuration state of the system in a set of objects representing the con...
	Figure�5–1 CCE Block Diagram

	How Data Flows Through CCE
	From start to finish, getting data to do the right things and go to the right places can seem com...
	• Packages register via configuration files for notification of when properties of objects change...
	• cced listens for incoming clients.
	• A client connects to cced, which communicates using the CSCP protocol.
	• The client gets or sets properties, or creates or destroys objects to configure the system.
	• cced determines which handlers need to run to actuate events from the client, and runs them.
	• The handlers communicate with cced, if needed, via CSCP.
	• The handlers each do their work and exit, indicating their state of success. See “Bye” on page�...
	• cced returns the status of the transaction to the client via CSCP.

	Figure�5–2 illustrates the flow of CCE data.
	Figure�5–2 CCE Process Flow

	The CCE Daemon
	The CCE daemon (cced) is the server process that implements the core of CCE. cced accepts incomin...
	In order to preserve data integrity, all CSCP write operations for all clients are serialized. Th...
	Command-Line Parameters
	Usually, cced does not need command-line parameters. However, for debugging handlers or CCE itsel...
	Table�5–1 cced Command-Line Parameters

	The Cobalt System Configuration Protocol (CSCP)
	The Cobalt System Configuration Protocol (CSCP) is a simple protocol for communication between cl...
	In order to use CCE, you must use CSCP. The simplest way to use CSCP is with the command-line too...
	For detailed information about the protocol specification, see Appendix�E, “Cobalt System Configu...

	The Cobalt Object Database (CODB)
	The Cobalt Object Database (CODB), is similar in many respects to both traditional databases and ...
	The traditional form of object manipulation is through object methods. These methods encapsulate ...

	Schemas
	The structure of objects within CODB is defined by schemas which are provided by third- party ven...
	How to Read XML Syntax Descriptions
	Before proceeding, it is prudent to briefly cover the pieces that make a file XML. XML is a plain...
	Whitespace
	Throughout XML files, most whitespace characters (spaces, tabs, and newlines) are ignored. The on...

	Symbols
	To better represent the syntax used in this explanation, some symbols are necessary. Table�5–2 ex...
	Table�5–2 Symbols Used in Schemas

	Elements and Content
	All XML files consist of one or more elements. Each element has a case-insensitive name and a set...
	"<" SP* name SP* attribute* SP* ">"

	The content field follows the opening tag. Content fields are free form, and all characters are r...
	"</" SP* name SP* ">"

	Because the content field is optional, it is frequently empty. A second form of opening tag is al...
	"<" SP* name SP* attribute* SP* "/>"

	Attributes
	As noted above, an element can have zero or more attributes. Attributes are always key-value pair...
	SP+ key SP* "=" SP* QU value QU

	Comments
	In addition to elements, XML files can include comments. Comments can be outside of any element, ...

	Escape Sequences
	Because some characters, such as < and > are used by the XML language itself, it is necessary to ...
	Table�5–3 XML Escape Sequences

	Sample XML
	<!-- This is a sample XML file, illustrating syntax -->
	<XMLElement NAME="Sample">
	<SubElement name="Sub Sample 1">
	This is <content> for a "SubElement"
	</SubElement>
	<SubElement Name = "Sub Sample 2" Color="green"></SubElement>
	<SubElement
	Name="Sub Sample 3" Note = "&"/>
	</XMLElement>

	Schema Syntax
	Schema definition files can include any of the following elements:
	• SCHEMA
	• CLASS
	• PROPERTY
	• TYPEDEF

	Syntax: SCHEMA
	A SCHEMA is provided to identify a complete schema definition to the system. This element provide...
	If no SCHEMA element is defined, or other top-level elements are defined, the non-schema- wrapped...
	Element name: "SCHEMA"
	Required attributes: "NAME", "VENDOR", "VERSION"
	Optional attributes: any
	Required content: none
	Optional content: "CLASS" or "TYPEDEF" elements
	Valid Parents: none
	Table�5–4 SCHEMA Attributes

	Syntax: CLASS
	A CLASS is the formal definition of an object's structure. An object has all the properties of it...
	Element name: "CLASS"
	Required attributes: "NAME", "VERSION"
	Optional attributes: "NAMESPACE"
	Required content: none
	Optional content: "PROPERTY" elements
	Valid Parents: "SCHEMA"
	Table�5–5 CLASS Attributes

	Syntax: PROPERTY
	A PROPERTY is a sub-element of a CLASS. A single PROPERTY defines a single datum. CLASSES get the...
	Element name: "PROPERTY"
	Required attributes: "NAME", "TYPE"
	Optional attributes: "DEFAULT", "OPTIONAL", "ARRAY", "READACL",
	"WRITEACL"
	Required content: none
	Optional content: none
	Valid Parents: "CLASS"
	Table�5–6 PROPERTY Attributes

	Syntax: TYPEDEF
	A TYPEDEF is a mechanism to build on the basic data typing provided by CCE. A TYPEDEF is a symbol...
	Element name: "TYPEDEF"

	Required attributes: "NAME", "TYPE", "DATA"
	Optional attributes: "ERRMSG"
	Required content: none
	Valid content: none
	Valid Parents: "SCHEMA"
	Table�5–7 TYPEDEF Attributes

	Sample Schema Definition File
	<SCHEMA
	NAME="Sample Schema"
	VENDOR="Cobalt Networks"
	VERSION="3.1415">
	<!-- Some classes, properties, namespaces, and types -->
	<CLASS name="SampleClass" version="12345">
	<PROPERTY name="name" type="sample_type" default="new"/>
	</CLASS>
	<CLASS name="SampleClass" namespace="Demo" version="6.02e23">
	<PROPERTY name="name" type="sample_type" default="123"/>
	</CLASS>
	<TYPEDEF name="sample_type" type="re" data="[A-Za-z0-9]*" />
	<CLASS name="SampleClass2" version="2.7183">
	<PROPERTY
	name="name"
	type="foo_type"
	default="new"
	optional="1"
	array=""
	readacl="ruleAdmin" writeacl="ruleAdmin"
	/>
	</CLASS>
	<TYPEDEF
	name="foo_type"
	type="re" data="[A-Za-z0-9]*"
	errmsg="Yowie! You can't do that with a foo_type!"
	/>
	</SCHEMA>

	Handler Registration
	The format of a CCE handler configuration file (conf) is very simple with two or three whitespace...
	event <whitespace> handler <whitespace> stage

	Any line that begins with a hash (#), or is blank is ignored.
	Events
	The event field defines the circumstances upon which the handler is run. The event field follows ...
	class.property

	This registers the specified handler to run whenever the specified class property is modified. To...
	Table�5–8 Valid Events

	Handlers
	The handler field defines the type of handler, and the type-specific handler details. It has the ...
	type:details

	The details of the handler depend on the type specified. The following types are available:
	• exec, which executes the file named in the details field.
	• perl, which sends the Perl script named in the details field through a persistent Perl process,...
	• test, which sends the contents of the details field to the standard output of cced.

	For exec and perl type handlers, which have a path name in the details field, some path expansion...

	Stages
	All handlers are run in one of several stages, and can thereby ensure some relative ordering. The...
	The final stage, CLEANUP, is meant for handlers which can not be undone. Handlers which register ...

	File Naming
	When searching for handler registration files, cced will do a recursive search of the handler con...

	Sample Handler Registration File
	# Register handlers for Class from AVendor
	Class._CREATE exec:/opt/AVendor/Class/Class_create configure
	Class._DESTROY exec:/usr/sausalito/handlers/Class_destroy test
	Class.* exec:AVendor/Class/Class_mod
	Class.property perl:/usr/sausalito/bin/Class_prop.pl validate

	Libraries
	Libraries are a set of subroutines to handles details of accessing CCE via CSCP. These libraries ...
	In order to simplify accessing CSCP easier, libraries have been written in several common program...
	C
	The CCE Library is meant to be used for all communications with the CCE library, that is, communi...
	The general overview of CCE interaction from the point of view of a client is primarily a process...
	All interaction is mediated through a CceConnection object that encapsulates the connection to th...

	Perl
	This Perl library implements an object oriented interface for communicating with the Cobalt Confi...
	Synopsis
	use CCE;
	my $cce = new CCE;
	$cce->connectfd();

	Developer Programming Interface
	Creating A New Object
	my $cce = new CCE;

	Connecting to the Daemon
	The CCE object supports two ways of connecting to the daemon. The first is to open a new Unix dom...
	$cce->connectuds($filename);

	If $filename is omitted, CCE instead attempts to connect to the default path:
	/usr/sausalito/cced.socket

	In some cases such as in the case of an event handler, the connection to the CCE daemon already e...
	$cce->connectfd($readfd, $writefd);
	If $readfd or $writefd are omitted, CCE connects to *STDIN and *STDOUT by default, which is the...

	CSCP Libraries
	This section provides information on CSCP libraries. For information on these commands, see the C...
	AUTH
	$ok = $cce->auth($username, $password);
	Description: Authenticates a CCE connection between client and system
	Parameters
	$ok indicates returns a boolean success flag. See the CSCP appendix for information on 201 and 40...

	Create
	($ok, $badkeys, @info) = $h->create($class, \%object);
	Description: Creates a new object of the specified class $class, initialized using the attributes...
	Parameters
	$ok indicates whether the operation was successful.
	$%badkeys is a hash of bad values, where the key is the name of attribute whose value was rejecte...
	@info is an array of additional messages returned by the operation, usually warnings.
	$object is a reference to a hash that contains object data.

	Destroy
	($ok, @info) = $h->destroy($oid);
	Description: Destroys the specified object.
	Return Values
	$ok indicates whether the operation was successful.
	@info is a list of additional messages returned by the operation.

	Set
	($ok, $badkeys, @info) = $h->set($oid, $namespace, \%object);
	Description: Changes the attributes of an existing object.
	Parameters
	$oid is the numeric id of the object to modify.
	$namespace specifies which namespace of the object to operate on.
	%object is a hash of attributes to change.
	If namespace is omitted, the default main namespace ("") is used instead.

	Return Values
	$ok indicates whether the operation was successful.
	%$badkeys is a hash of bad values, where the key is the name of attribute whose value was rejecte...
	@info is a list of additional messages returned by the operation.

	Get
	($ok, $object, $old, $new) = $h->get($oid, $namespace);
	NOTE: $oid is a long 32-bit integer.
	Description: Get is used to fetch all of the attributes of an object within a single namespace. $...
	If namespace is omitted, the default main namespace ("") will be used instead.
	Return Values
	$ok indicates whether the operation was successful.
	%$object is a hash of the attributes of the object within the specified namespace.
	%$old is a hash of the previous values of the attributes of the object within the specified names...
	%$new is a hash of only the attributes that have changed in the course of the current transaction.
	In the case of a management client communicating with the CCE daemon, the %$object and %$old hash...
	When an event handler communicates with the CCE daemon, the %$old contains the attributes of the ...

	Names
	($ok, $namelist, @info) = $h->names($oid);
	Description: Returns the list of all valid namespaces associated with an object.%$new hashes can ...
	Names gets the attributes of an existing object. $oid is the numeric identifier of the object, an...
	$ok indicates whether the operation was successful.
	@$namelist is a list of all valid namespaces.
	@info is a list of additional messages returned by the operation.

	Find
	@oidlist = $h->find($class, \%criteria)
	Description: The find function searches the database for all objects of class $class with attribu...
	$systemoid) = $h->find("System");
	$dougoid= $h->find("User", { 'name' => 'doug' });
	@oidlist is a list of numeric object identifiers.
	NOTE: more info about FIND info from email exchange to be included here

	Bye
	$ok = $h->bye($success, $msg)
	Description: Says goodbye to the server and terminates the connection. For management clients, $s...
	$ok is true if the bye command was successful.

	Baddata
	$ok = $h->baddata ($oid, $key, $value)
	Description: Only used by event handlers: emits a message back to the server indicating that the ...
	$ok is true if the command is successful.

	Info
	$ok = $h->info ($msg)
	Description: Sends an arbitrary message back to the server.

	Warn
	$ok = $h->info (@msg)
	Description: Sends an arbitrary warning message back to the server.

	Command-line (CceClient)
	CceClient is the equivalent of telnet for communication directly with the CCE server. The user ca...
	NOTE: Example to be provided in a future draft

	About CceClient
	NOTE: Example to be provided in a future draft

	Public Methods for CceClient (PHP)
	Public methods for CceClient include function CceClient(), which is the constructor that returns ...
	You can use these methods to find, modify, create, destroy, and query objects.
	function CceClient()
	Description: constructor. This creates a new CceClient handle.

	Example: $cce = new CceClient;
	function auth($userName, $password)
	Description: This method connects and authenticates the client to the server.

	Parameters
	userName: user name in string
	password: password in string
	Returns: false if failure, or a new session key if success.
	function authkey($userName, $sessionId)
	Description: Authorizes using a session key instead of a password.
	Returns: true if success, false if failure.

	function whoami()
	Description: This method should return the string = username.

	function bye()
	Description: disconnect from server

	function endkey()
	Description: This method releases current session key so that the session key can no longer be us...

	function connect($socketPath = "")
	Description: connect to CCE
	Returns: true if succeed, false otherwise.

	Parameters
	socketPath: the path of the Unix domain socket to CCE.
	function create($class, $vars = array())
	Returns: boolean success

	function destroy($oid)
	Returns: boolean success

	function errors()
	Description: get the last error that occurred.
	Returns: an array of CceError objects.

	function raw_errors()
	Description: returns an array of hashes. Each hash contains information about a particular error,...
	Returns: an array of error objects in hashes.

	function find($class, $vars = array())
	Description:
	Returns:

	function get($oid, $namespace = "")
	Description:
	Returns: array of OIDs.

	function isConnected()
	Returns: true if the client is connected to the server, false otherwise.

	function names($arg)
	Description: $arg is an OID or class name.
	Returns: list of namespace associated with one class or object.

	function set($oid, $namespace = "", $vars = array())
	Returns: boolean success.

	Example:
	Make a schema
	NOTE: Example to be provided in a future draft

	Manipulate from hello_world
	NOTE: Example to be provided in a future draft

	CCE Constructors
	CCE constructors verify the initial state of system objects at initial set up and verify their st...

	Manipulate from hello_world
	NOTE: to be included in later draft
	Chapter�6

	Making Sausalito-Aware Applications
	Making Sausalito-Aware Applications
	This chapter provides information on creating applications that run on the Qube 3. To create an a...
	About the Application Module
	The application module is a self-contained bundle of files, directories, and resources required f...
	New modules can contain any or all of the following code:
	1. User Interface (UI) modules
	• UI pages built using UIFC
	• Navigation nodes, such as adding buttons and menu items
	The Web mail service that is displayed on the Cobalt menu is an example of a service that is inte...

	2. Internationalization Modules
	• Internationalization resources to translate the user interface into other languages.

	3. Back-end modules
	• CCE configuration files
	• CCE handlers
	Adding a user to the Qube 3 is an example of an instance that impacts only the back-end modules, ...

	4. Binary modules
	• Service binaries and configuration files, for example, email modules have SendMail and Majordom...
	• Databases that register users as they are created and notify event handlers about creating user...
	These modules can be manually installed and completely unintegrated to the Cobalt User Interface ...

	Naming Your Application Module
	Developers must use unique vendor-specific names for modules to avoid name conflicts.
	NOTE: Cobalt uses base in its module names, for example, base-devel.mod. Developers must differen...

	Building a New Service Module
	A service module is a self-contained bundle of files or directories and resources required for a ...
	• Navigation nodes — service.xml
	• User Interface (UI) pages built using UIFC — service.php
	• Internationalization resources — service.po
	• CCE configuration files — service.schema, service.conf
	• CCE handlers — serviceMod.pl, serviceMod.c
	• Service binaries and configuration — serviced
	NOTE: You can write handlers in any language. Cobalt provides bindings for C and Perl.

	Cobalt enabling tools include:
	• Standard directory structure document; see Figure�6–7 on page�6–21.
	• Build tools to create loadable module files (scripts and a Makefile)

	Making your Application into a Package
	This section describes the skeleton module for Sausalito. By customizing the skeleton module for ...
	To build a service module:
	1. Create handlers to interact with the Cobalt Configuration Engine (CCE). A configuration file g...
	2. Create any user interface components, if necessary. These include web and menu page descriptor...
	3. Write any locale files; these go in the locale directory.
	4. Look at templates/spec.tmpl and templates/packing_list.tmpl.
	NOTE: The default template to build RPM files is in /usr/sausalito/devel/templates. If you want t...

	5. Look at the top-level Makefile. Adjust the variables to fit your situation.
	The default build targets are make all, make clean, make install, and make rpm.
	NOTE: A sample skeleton module is available in the Cobalt Developer web page. Go to http://develo...

	Here's some more information about the default make rules and expected file names:
	Table�6–1 The top-level Makefile variables

	The BUILD variables determine which directories to include when calling the clean, install, and r...
	The default make rules take the BUILD? variables and build up ui, glue, and locale RPMS, if reque...
	Table�6–2 Module Directory Layout

	The default make rules expect the following file layout:
	1) glue/conf/*
	glue/handlers/*

	2) locale/localeX/$(SERVICE).po
	3) ui/menu/*
	ui/web/*

	4) constructor/*
	destructor/*
	The default make rules place these files in the following locations:
	glue/conf/* -> $(CCEDIR)/conf/$(VENDOR)/$(SERVICE)/* glue/handlers/* -> $(CCEDIR)/handlers/$(VEND...
	locale/localeX/$(SERVICE).po -> /usr/share/locale/localeX/LC_MESSAGES/$(VENDOR)-$(SERVICE).mo
	ui/menu/* -> $(CCEDIR)/ui/menu/$(VENDOR)/$(SERVICE)/* ui/web/* -> $(CCEDIR)/ui/web/$(VENDOR)/$(SE...
	constructors/* $(CCEDIR)/constructor/$(VENDOR)/$(SERVICE)/ *destructors/* $(CCEDIR)/destructor/$(...
	If your module does not contain compiled code, the above make rules should be all that you need f...
	In addition, the make rpm rule does not touch the src directory, so you must create any RPMs you ...
	Finally, you might need to edit templates/rpmdefs.tmpl to add additional build, install, and file...
	NOTE: If you have a VENDORNAME specified, make searches first in {glue, locale, ui, src}/$(VENDOR...

	Introducing Slush Barn, A “Real-World” Application
	Here is an example of how to create a new Sausalito module. The goal of this example is to manage...
	The files created in making this module are listed in below. Although many files are needed for t...
	NOTE: These code modules are given the vendor-specific name slush so that they are differentiated...
	• slush-barn.mod/Makefile
	• slush-barn.mod/glue/conf/barn.conf
	• slush-barn.mod/glue/handlers/Animal.pl
	• slush-barn.mod/glue/schemas/animal.schema
	• slush-barn.mod/glue/handlers/Animal.pl
	• slush-barn.mod/ui/menu/barn.xml
	• slush-barn.mod/ui/web/animal.php
	• slush-barn.mod/ui/web/animalHandler.php
	• slush-barn.mod/ui/web/slaughter.php
	• slush-barn.mod/locale/en/animal.po

	The data types are registered with CCE using a typedef and a class tag within the XML file animal...
	Event handlers are also registered with CCE These event handlers are found within the barn.conf f...
	The logic to the user interface is very simple. A listing of all the currently known animals is l...
	In order for our pages to be linked within our site, we need to create the XML tree node. This fi...
	In this example, you can manipulate objects in a barn.
	NOTE: No animals were harmed in the making of this application.

	The new page is shown in Figure�6–1.
	Figure�6–1 Manipulating Barn Objects

	How to Install your Package File on the Qube 3
	There are two ways that packages can be installed on Qube:
	• manually
	• update server

	Both these ways provide information about the package, that is, package meta-information, before ...
	Update servers alert you if they have new software for your Qube 3. When the Qube is alerted that...
	1. The Qube 3 queries the server for information about new software. It provides details about th...
	2. The update server replies with list of available packages with associated information, such as...
	3. If an InfoURL field is specified, a popup window with the URL is displayed when you go to the ...
	4. Installation can be selected.
	The events around the manual installation are as follows:

	1. The user on the Qube enters the package location through either browser upload, URL download, ...
	2. The Qube prepares the package for installation and displays the installation page. This inform...
	3. The contents of the installation page display a short description of the package that is to be...
	4. Installation can be selected.
	Installation Process
	The following stages occur in the installation process:
	• If the package requires the server to reboot, the user is prompted to reboot the machine.
	• The install process looks first for a splash page If the splash page specifies the pre-installa...
	NOTE: The splash page optionally specifies a pre-installation page, which allows developer to cre...
	• If the splash page doesn’t exist and the license field does, BlueLinQ will present a standard l...
	• Once the user accepts the license (if there is a license), BlueLinQ checks package dependencies...

	NOTE: BlueLinQ will install an RPM only if it is newer than any existing RPMs. If there is an exi...

	Choices for the Installation Process
	You can customize your installation. You can change the look and feel of install by opting to inc...
	• an infoURL field
	• a splash page
	• a generic license

	The splash page must be a CGI or PHP file. The update process calls this CGI with the following U...

	Package Structure
	The package file format is a tar.gz file. When you install a package file, BlueLinQ check for the...
	• whether the file is a tar file or a compressed tar file
	• whether the file is signed

	In packages for earlier Cobalt products, package files had the following elements:
	• packing_list
	• RPMs
	• SRPMs
	• install_me script

	Packages for earlier Cobalt products had scripts that performed all installation tasks. Package d...
	• pre-installation
	• post-installation
	• pre-uninstallation
	• post-uninstallation

	BlueLinQ runs these scripts as part of the installation. Package dependencies are based on vendor...
	The new packing list format includes the following elements as shown in Table�6–3.
	NOTE: All the information in the package list format is case-sensitive.
	Table�6–3 Package List Format

	NOTE: Internationalized strings are in the following format: [[vendor]]. If you are specifying st...

	Package files have the following structures. Figure�6–2 shows the package file structure.
	Figure�6–2 Package File Structure

	See “Module File Hierarchy” on page�6–21 for a more complete file hierarchy.
	NOTE: The packing_list format for packages is very similar to the package part of the package_lis...

	The following features are only used by software update notification mechanism (BlueLinQ):
	• Size (in bytes)
	• InfoURL
	• Location
	• PackageType

	The following fields are only used by actual package installation mechanism:
	• RPM
	• SRPM
	• Options

	Package Dependency Model
	The dependency model allows you to restrict packages to particular Cobalt products, for example, ...
	The format for dependency requires that each dependency is on a separate line with a label denoti...
	• Product: Cobalt Product Dependency such that the package will install if other software product...
	• Package dependencies:
	• Depend: Normal package dependency based on the version number being less than (<), equal to (=)...
	• VisibleDepend: Visible dependency: same as Depend but is only useful for the software update me...

	• Obsoletes: Obsoletes packages name or name and optional version, less than (<), equal to (=), o...

	Information for Installing Stand-alone Packages
	The following are used in the actual package installation process but not in update server- suppl...
	• RPM
	• SRPM
	• Options (in a comma-separated list) include:
	• reboot
	• refreshui
	• refreshcce
	• uninstallable

	These fields are used to provide information and are included in the actual package as well as pr...
	• Package identification
	• Name and nametag
	• Version and versionTag
	• Vendor and vendorTag

	• Description
	• shortDesc
	• longDesc

	• License information
	• License
	• Splash

	• Category

	These fields are found only in update server package:
	• Size (in bytes)
	• PackageType: complete or update
	• Location
	• InfoURL: a pop-up window appears when the user clicks the magnifying glass
	Figure�6–3 New Software Installed

	If you click on the magnifying glass, you see the information shown in Figure�6–4, which correspo...
	Figure�6–4 New Software Installation Details

	Software Update Server
	NOTE: If the infoURL file exists, it displays a popup window and will not install the actual pack...
	The BlueLinQ tab on the Qube 3 has an Updates menu. This page lists available software with the f...
	• Update server-provided information (name, vendor, locale, description)
	• Pop-up information. InfoURL displays the URL to be passed the Qube’s serial number
	• The package checks for an InfoURL. If one exists, the page referenced by the InfoURL appears. I...

	When users click on Install Details, the Qube 3:
	• Displays the splash page if there is one or displays a license agreement in standardized licens...
	• Begins installation

	When the user begins installation, these events occur on the Qube 3:
	• It checks for a signature and attempts to authenticate it, if one is present. If the signature ...
	• It runs the pre-installation script.
	• It installs the RPMs.
	• It runs the post-installation scripts.
	• It reboots or refreshes, if those options are set.

	Figure�6–5 shows the Update Server page.
	Figure�6–5 Update Software Installed

	If you click on the magnifying glass, you see the information shown in Figure�6–6, shown in Figur...
	Figure�6–6 Update Software Installation Details

	Development Details
	Modules expect the following auxiliary support from Sausalito development tools:
	• SAUSALITO/devel/module.mk for all the Makefile rules.
	• SAUSALITO/bin/mod_rpmize for the rpm spec file generator.
	Figure�6–7 Module File Hierarchy

	Appendix�A

	User Interface Foundation Classes
	This appendix is a complete reference for all User Interface Foundation Classes (UIFC). The UIFC ...
	To use UIFC, you should have some basic knowledge about object-oriented design and programming as...
	The UIFC were designed to provide both user interface consistency and flexibility. HtmlComponentF...
	Each UIFC class is listed in this appendix in alphabetical order.
	HTML Generation
	UIFC contains classes of visual components. The classes have methods to generate the look and fee...

	Error Checking
	Form fields in UIFC support the plug-in of JavaScript error checking code. This feature is useful...

	Reusable Code
	The class hierarchy of UIFC is designed to be reusable. It is easy to subclass a UIFC class and m...

	Common Pitfalls
	There are several things to avoid when using UIFC:
	• The UIFC encompass many functions. You must pay special attention in extending UIFC classes to ...
	• Because UIFC is written in PHP and PHP does not have good support for object- oriented programi...
	• Do not use UIFC to format free-flow text paragraphs. Pure HTML provides more formatting capabil...
	• The toHeaderHtml() method of Page object outputs HTTP headers. Do not print anything before thi...
	<?php
	...
	?>
	<?php
	print($page->toHeaderHtml());
	?>

	• Because PHP is interpreted and is basically typeless, it is very easy to pass in parameters of ...

	AddButton
	This class creates a labeled button. The application causes an Add item action when the button is...
	Extends:
	The class AddButton extends Button.

	Implements:
	The class button implements HTMLComponent, Stylish, and Collatable.

	See also:
	AddButton, BackButton, CancelButon, DetailButton, RemoveButton, SaveButton

	Public Methods
	function AddButton($page, $action)
	Description: constructor
	Returns:
	none

	Parameters
	page: the Page object in which this object resides
	action: the string used within HREF attribute of the A tag

	BackButton
	This class creates a labeled Back button. The application causes a Back action when the button is...
	Extends:
	The class BackButton extends Button.

	Implements:
	The class button implements HTMLComponent, Stylish, and Collatable.

	See also:
	AddButton, BackButton, CancelButon RemoveButton, SaveButton

	Public Methods
	Description: constructor
	function BackButton($page, $action)

	Parameters
	action: the string used within HREF attribute of the A tag
	page: the Page object in which this object resides

	Bar
	This class creates a vertical bar on the page.
	Extends:
	class Bar extends FormField.

	Implements:
	HTMLComponent, Collatable, Stylish

	See also:
	FormField

	Public Methods
	function getLabel()
	Returns: a label in string

	function setLabel($label)
	Description: set label to replace the percentage shown by default

	Parameters
	label: a label in string
	function setVertical()
	Description: set bar to type vertical

	Button
	This class creates a labeled button. The application causes a specified action when the button is...
	Extends:
	HtmlComponent

	Implements:
	The class button implements HTMLComponent, Stylish, and Collatable.

	See also:
	AddButton, BackButton, CancelButon, DetailButton, RemoveButton, MultiButton, SaveButton

	Public Methods
	function Button($page, $action, $label, $labelDisabled = "")
	Description: Constructor

	Parameters
	page: the Page object in which this object lives
	action: the string used within HREF attribute of the A tag
	label: a Label object for the normal state
	labelDisabled: a Label object for the disabled state. Optional. If it is not supplied, it is the ...
	function getAction()
	Description: get the action to perform when the button is pressed
	Returns: an action

	function setAction($action)
	Description: set the action to perform when the button is pressed

	function isDisabled()
	Return: $isDisabled

	Parameters
	disabled: true if the button is disabled; false otherwise
	function setDisabled($isDisabled)
	function getLabel()
	function getLabelDisabled()
	function setLabel($label, $labelDisabled = "")
	Description: set the label for the button

	Parameters
	label: label object for the normal state
	labelDisabled: a label object for the disabled state. Optional. If not supplied, it is the same a...
	function toHtml($style = "")
	Returns: $style, $page

	CancelButton
	class CancelButton extends Button.
	Description: constructor
	This class creates a cancelbutton. The application causes an action to be cancelled when the butt...
	Extends:
	none

	Implements:
	The class button implements HTMLComponent, stylish, and collatable.

	See also:
	AddButton, BackButton, CancelButon, DetailButton, RemoveButton, SaveButton

	Public Methods
	function CancelButton($page, $action)

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	CompositeFormField
	The class CompositeFormField extends FormField.
	Public Methods
	function CompositeFormField()
	Description: constructor

	function getDelimiter()
	Description: get the delimiter to separate form fields

	function setDelimiter($delimiter)
	Description: set the delimiter to separate form fields

	Parameters
	delimiter: a delimiter in string
	function getFormFields()
	Description: get form fields added to this object
	Returns: an array of FormField objects

	function addFormField($formField)
	Description: add a form field to this object

	Parameter
	formField: a FormField object
	Returns: nothing

	CountryName
	The class CountryName extends FormField.
	Public Methods
	function CountryName($page, $id, $value)
	Description: constructor
	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the group of country names defined in ISO 3166

	DetailButton
	This class creates a DetailButton. The application causes a DetailButton action when the button i...
	Extends:
	The class DetailButton extends Button.

	Implements:
	The class button implements HTMLComponent, Stylish, and Collatable.

	See also:
	AddButton, BackButton, CancelButton, DetailButton, ModfiyButton, RemoveButton, SaveButton

	Public Methods
	function DetailButton($page, $action)
	Description: constructor

	Parameters:
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	DomainName
	The class DomainName extends FormField.

	DomainNameList
	The class DomainNameList extends FormField.

	EmailAddress
	The class EmailAddress extends FormField.

	EmailAddressList
	The class EmailAddressList extends FormField.
	Public Methods
	function EmailAddressList ($page, $id, $value, $invalidMessage, $emptyMessage)
	Description: superclass constructor

	function setImport($on, $javascriptFunction = "")
	Description: set the import feature of the list so that email addresses can be imported from the ...
	Parameters:
	on: true to enable import, false to disable
	javascriptFunction: JavaScript code that is being run during import

	function setFormat($format = "BLOCK")

	Parameters:
	Format to have the EmailAddressList show up in either BLOCK mode in which email addresses are one...

	FileUpLoad
	The class FileUpload extends FormField.
	Public methods
	function FileUpload($page, $id, $value, $maxFileSize = "", $invalidMessage, $emptyMessage = "")
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the path
	maxFileSize: the maximum file size allowed to upload in bytes. Optional
	invalidMessage: the message to be shown upon invalid input. Optional
	emptyMessage: the message to be shown upon empty input if the field is not optional. This message...
	function setMaxFileSize($maxFileSize)
	Description: set the maximum file size allowed to upload

	Parameters
	maxFileSize: bytes in integer

	Form
	This class represents a HTML form.
	Applicability
	This class is used where a HTML form is needed.

	Usage
	Each Page contains a Form object that is accessible by the getForm() method of the Page object. F...
	Public Methods
	function Form($page, $action = "")
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the ACTION attribute of the FORM tag. Optional. If not supplied, it is set to environment...
	function getAction()
	Description: get the ACTION attribute

	Parameters
	action: the action attribute of the FORM tag
	Also see: setAction()
	function setAction($action)
	Description: set the ACTION attribute

	Parameters
	action: the ACTION attribute of the FORM tag
	Also see: getAction()
	function getTarget()
	Description: get the target attribute
	Returns: the target attribute of the form tag
	Also see: setTarget()

	function setTarget($target)
	Description: set the target attribute
	Returns: the target attribute of the form tag
	Also see: getTarget()

	function getId()
	Description: get the ID of the form. It is also the NAME attribute
	Returns: a string
	Also see: setId()

	function setId($id)
	Description: set the ID of the form. It is also the NAME attribute
	Returns: a string
	Also see: getId()

	function getSubmitAction()
	Description: get the form action that is used to submit the form
	Returns: a string

	function $handlerName()
	function toFooterHtml($style = "")
	Description: translate the footer of the form into HTML representation

	Parameters
	style: a Style object that defines the style of the representation. Optional. If not supplied, th...
	Returns: HTML in string.

	FormField
	The class FormField extends HtmlComponent.
	NOTE: You can not put HTML into FormField values.

	Public Methods
	function FormField($page, $id, $value = "", $invalidMessage = "", $emptyMessage = "")
	Description: constructor

	Parameters
	page: a Page object in which this form field resides
	id: the identifier of this form field. Used in the NAME attribute of input fields
	value: the default value of this form field. Depending on what this form field is, the value can ...
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function getAccess()
	Description: get the access property
	Returns: a string
	Also see: setAccess()

	function setAccess($access)
	Description: set the access property

	Parameter
	Access can be "" for hidden, "r" for read-only, "w" for write-only and "rw" for both read and write.
	Returns: true if succeed, false if failed
	Also see: getAccess()
	function getCollatableValue()
	function getEmptyMessage()
	Description: set the message to display when the form field is empty while it should not

	Parameter
	emptyMessage: a string
	Also see: setEmptyMessage()
	function setEmptyMessage($emptyMessage)
	Description: set the message to display when the form field is empty while it should not

	Parameter
	emptyMessage: a string
	Also see: setEmptyMessage()
	function getId()
	Description: set the unique ID of the form field. It is used to identify the form field when the ...

	function setId($id)

	Parameter
	id: a string
	function getInvalidMessage()
	Description: set the message to display when the form field is invalid

	Parameter
	invalidMessage: a string
	function setInvalidMessage($invalidMessage)
	Description: set the message to display when the form field is invalid

	Parameter
	invalidMessage: a string
	Also see: getInvalidMessage()
	function isOptional()
	Description: get the optional flag
	Returns: true if this form field is optional, false otherwise
	Also see: setOptional()

	function setOptional($optional)
	Description: set the optional flag; it indicates if the form field can be empty.

	Parameters
	optional: true if the field is optional, false otherwise
	Also see: setOptional()
	function getValue()
	Description: get the value
	Returns: the value of different types depending on which concrete subclass of form field this is
	Also see: setValue()

	function setValue($value)
	Description: set the value; depending on the concrete type of the form field (e.g., IpAddress); t...

	Parameters
	value: any variable
	Also see: getValue()

	FormFieldBuilder
	This class helps to build form field components.
	Applicability
	Any form field can use this class to build components.
	Public methods
	function makeCheckboxField($id, $value, $access, $checked, $onClick = "")
	Description: make a checkbox field

	Parameters
	id: the identifier of the field
	value: the value of the HTML input field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	checked: if it has a value checked, false otherwise
	onClick: the onClick attribute of the field
	Returns: HTML that represents the field
	function makeFileUploadField($id, $access, $size, $maxLength, $onChange)
	Description: make a file upload field

	Parameters
	id: the identifier of the field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	size: the length of the field
	maxLength: maximum number of characters that can be entered into the field
	onChange: the onChange attribute of the field
	Returns: HTML that represents the field
	function makeHiddenField($id, $value = "")
	Description: make a hidden field

	Parameters
	id: the identifier of the field
	value: the value of the HTML input field
	Returns: HTML that represents the field
	function makeJavaScript($formField, $changeHandler, $submitHandler)
	Description: make javascript for form fields

	Parameters
	formField: the form field to generate javascript for
	changeHandler: the JavaScript function that is called when the form field change
	submitHandler: the JavaScript function that is called when the form field submits
	Returns: HTML that represents the field
	function makePasswordField($id, $value, $access, $size, $onChange)
	Description: make a password field
	id: the identifier of the field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	size: the length of the field
	onChange: the onChange attribute of the field
	Returns: HTML that represents the field

	function makeRadioField($id, $value, $access, $checked)
	Description: make a radio field
	id: the identifier of the field
	value: the value of the HTML input field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write paramete...
	Returns: HTML that represents the field

	function makeSelectField($id, $access, $size, $width, $isMultiple, $formId, $onChange = "", $labe...
	Description: make a select field

	Parameters
	id: the identifier of the field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	size: the SIZE attribute of the HTML SELECT tag
	width: the minimum width. Select field width is static in Netscape, dynamic in IE
	isMultiple: true if multiple items can be selected, false otherwise
	formId: the ID of the form this field lives in
	onChange: the onChange attribute of the field. Optional.
	labels: an array of labels in string. Optional. Must have same length with values
	values: an array of values in string. Optional. Must have same length with labels
	selectedIndexes: an array of indexes of labels for the selected
	Returns: HTML that represents the field
	function makeTextField($id, $value, $access, $size, $maxLength, $onChange)
	Description: make a text field

	Parameters
	id: the identifier of the field
	value: the value of the HTML input field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	size: the length of the field
	maxLength: maximum number of characters that can be entered into the field
	onChange: the onChange attribute of the field
	Returns: HTML that represents the field
	function makeTextAreaField($id, $value, $access, $rows, $columns, $onChange, $wrap = "")
	Description: make a text area field

	Parameters
	id: the identifier of the field
	value: the value of the HTML input field
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	rows: the number of rows
	columns: the number of columns
	onChange: the onChange attribute of the field
	Returns: HTML that represents the field
	function makeTextListField($id, $values, $access, $formId, $rows, $columns)
	Description: make a text list field

	Parameters
	id: the identifier of the field
	values: an array of values in string
	access: "" for hidden, "r" for read-only, "w" for write-only and "rw" for read and write
	formId: the identifier of the form this field lives in
	rows: the number of rows
	columns: the number of columns
	Returns: HTML that represents the field

	FullName
	The class FullName extends FormField.

	GroupName
	The class GroupName extends FormField.

	HTMLComponent
	The class HtmlComponent extends Stylish.
	Implements
	This class implements Collatable.
	Description: constructor
	function HtmlComponent($page)

	Parameters
	page: the Page object in which this HTMLComponent resides.
	function setPage($page)
	Description: set Page object in which this HTMLComponent resides.

	Parameters
	page: a Page object
	function toHtml($style = "")
	Description: translate into a HTML representation

	Parameters
	style: the style of the representation in a Style object
	Returns: HTML

	ImageButton
	class ImageButton extends Button.
	Public methods
	function ImageButton($page, $action, $image, $lbl, $desc)
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	ImageLabel
	The class ImageLabel extends Label.
	Public Methods
	function ImageLabel($page, $image, $label, $description = "")
	Description: constructor

	Parameters
	page: the Page object this object lives in
	image: an URL of an image
	label: a label string
	description: a description string
	function getImage()
	Description: get the image used as the label
	Returns: an URL of an image function setImage($image)

	function setImage($image)
	Description: set the image used as the label

	Parameters
	image: an URL of an image
	function setImage($image)

	IntRange
	The class IntRange extends FormField.
	Public Methods
	function IntRange($page, $stylist, $id, $value, $invalidMessage, $emptyMessage = "")
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	stylist: a Stylist object that defines the style
	id: the identifier of this object
	value: the default value
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function isConfirm()
	Description: superclass constructor

	function setConfirm($isConfirm)
	Description: set the config flag

	Parameter
	isConfirm: if true, a confirm field is shown
	function setConfirm($isConfirm)
	Description: set the config flag
	Parameter
	isConfirm: if true, a confirm field is shown

	Integer
	The class Integer extends FormField.
	Public Methods
	function Integer($page, $stylist, $id, $value, $invalidMessage, $emptyMessage = "")
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	stylist: a Stylist object that defines the style
	id: the identifier of this object
	value: the default value
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input, if the field is not optional. This message is...
	˘function getMax()
	Description: get the maximum valid value
	Returns: an integer
	Also see: setMax()

	function setMax($max)
	Description: set the maximum valid value
	Returns: an integer
	Also see: getMax()

	function getMin()
	Description: get the minimum valid value
	Returns: an integer
	Also see: setMain()

	function setMin($min)
	Description: set the minimum valid value
	Returns: an integer
	Also see: getMain()

	function toHtml($style = "")

	IpAddressList
	The class IpAddressList extends FormField.

	Label
	The class Label extends HtmlComponent.
	Implements
	Label implements Collatable.

	Public Methods
	function Label($page, $label, $description = "")
	Description: constructor

	Parameters
	page: the Page object this object lives in
	label: a label string
	function getDescription()
	Description: get the description of the label
	Returns: a string
	Also see: setDescription()

	function setDescription()
	Description: get the description of the label
	Returns: a string
	Also see: getDescription()

	function getLabel()
	Description: get the label string of the label
	Returns: a string
	Also see: setLabel()

	function setLabel($label)
	Description: set the label string of the label
	Returns: a string
	Also see: getLabel()

	Locale
	The class Locale extends FormField.
	Public Methods
	function getPossibleLocales()
	Description: get the list of possible locales
	Returns: an array of locale strings
	Also see: setPossibleLocales()

	function setPossibleLocales($possibleLocales)
	Description: set the list of possible locales

	Parameters
	possibleLocales: an array of locale strings; browser is also a possible special locale string case
	Also see: getPossibleLocales()

	Parameters
	possibleLocales: an array of locale strings; browser is also a possible special locale string case.

	MacAddress
	The class MacAddress extends FormField.

	MailListName
	The class MailListName extends FormField.

	ModifyButton
	This class creates a ModifyButton. The application causes a ModifyButton action when the button i...
	Extends:
	The class DetailButton extends Button.

	Implements:
	The class button implements HTMLComponent, Stylish, and Collatable.

	See also:
	AddButton, BackButton, CancelButton, DetailButton, MultiButton, RemoveButton, SaveButton

	Public methods
	function ModifyButton($page, $action)
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	MultiButton
	This class represents a button with multiple actions. Users can perform one of those actions by s...
	Applicability
	Anywhere a related set of actions are provided for the users to select and the selected one is be...

	Usage
	Instantiate a MultiButton by specifying a text. This text is like the label of the button. Use ad...

	Extends
	The class MultiButton extends FormField.

	Implements
	The class MultiButton implements HTMLComponent, stylish, and collatable. It also implements actio...

	See also:
	AddButton, BackButton, CancelButton, DetailButton, ModifyButton RemoveButton, SaveButton

	Public Methods
	function MultiButton($page, $text = "", $id = "")
	Description: constructor

	Parameters
	page: the Page object this object lives in
	text: a label text in string. Optional
	function getActionText($action)
	Description: superclass constructor

	function getActions()
	Description: get all the text of the button
	Returns: an array of text strings
	Also see: addAction(), getActions()

	function addAction($action, $text)
	Description: add an action to the button

	Parameters
	action: the string used within HREF attribute of the A tag
	text: a label text in string
	function getSelectedIndex()
	Description: get the index of the selected action
	Returns: an integer
	Also see: setSelectedIndex()

	function setSelectedIndex($selectedIndex)
	Description: set the index of the selected action
	Returns: an integer
	Also see: getSelectedIndex()

	function getText()
	Description: get the default text of the button
	Returns: a string
	Also see: setText()

	function setText($text)
	Description: set the default text of the button
	Returns: a string
	Also see: getText()

	MultiChoice
	This class represents a widget that allows users to choose one or more options. It can render its...
	Applicability:
	Use Multichoice where options need to be selected.

	Usage
	Instantiate an object and add options, for example, Option class, to it. Each option can contain ...
	Extends
	The class MultiChoice extends FormField.

	Public Methods
	function MultiChoice($page, $id)
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	function getOptions()
	Description: get all options added
	Returns: an array of Option objects
	Also see: addOption()

	function addOption($option, $selected)
	Description: add an option; options are not selected by default when they are added.
	Parameters
	option: an Option object

	function setFullSize($fullSize)
	Description: set the full size mode
	Parameters
	fullSize: true to make the object rendered as more readable, but less compact; false otherwise.
	Returns: nothing.

	function setMultiple($multiple)
	Description: set the multiple mode

	Parameters
	multiple: true if multiple choices can be selected at the same time; false otherwise
	function setSelected($index, $isSelected = true)
	Description: select a option

	Parameters
	index: an integer index of the option
	isSelected: true for selected, false otherwise. Optional and true by default.
	Returns: nothing
	function setValue($value)

	MultiFileUpload
	The class MultiFileUpload extends FormField.
	Public Methods
	function MultiFileUpload($page, $id, $value, $maxFileSize = false, $invalidMessage = "", $emptyMe...
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the path
	maxFileSize: the maximum file size allowed to upload in bytes. Optional
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function getMaxFileSize()
	Description: get the maximum file size allowed to upload

	Returns: maxFileSize: bytes in an integer
	Parameters
	maxFileSize: bytes in integer
	Also see: setMaxFileSize()
	function setMaxFileSize($maxFileSize)
	Description: set the maximum file size allowed to upload
	Returns: maxFileSize: bytes in an integer

	Parameters
	maxFileSize: bytes in integer
	Also see: getMaxFileSize()

	NetAddress
	The class NetAddress extends FormField.

	NetAddressList
	The class NetAddressList extends FormField.

	Option
	This class represents an option for the MultiChoice class.
	Applicability:
	Use option where MultiChoice is used.

	Public methods
	function Option($label, $value, $isSelected = false)
	Description: constructor

	Parameters
	label: a Label object
	value: the value of this option
	isSelected: true if selected, false otherwise. The default is optional and false.
	function getLabel()
	Description: gets the label
	Returns: a Label object
	Also see: setLabel()

	function setLabel($label)
	Description: set the label

	Parameter
	label: a Label object
	Also see: getLabel()
	function isSelected()
	Description: see if the option is selected
	Returns: true if selected, false otherwise
	Also see: setSelected()

	function setSelected($isSelected)
	Description: select or unselect the option

	Parameter
	isSelected: true to select, false to unselect
	Also see: isSelected()
	function getValue()
	Description: get the value

	Parameters
	value: a string
	Also see: setValue()
	function setValue($value)
	Description: set the value

	Parameters
	value: a string
	Also see: getValue()
	function getFormFields()
	Description: get all the form fields of the block
	Returns: an array of FormField objects

	function getFormFieldLabel($formField)
	Description: get the label for a form field

	Parameters
	formField: a FormField object
	Returns: a Label object
	function addFormField($formField, $label = "")
	Description: add a form field to this option so this option can associate with another form field

	Parameters
	formField: a FormField object
	label: a Label object. Optional

	Page
	This class represents a page on the user interface. It also encapsulates all information about th...
	Applicability:
	This class is applicable to every page on the user interface that uses UIFC.

	Usage
	All UIFC pages must have one and only one page object. All toHtml() calls of any HtmlComponent mu...

	Public Methods
	function Page($stylist, $i18n, $formAction)
	Description: constructor

	Parameters
	stylist: a Stylist object that defines the style
	i18n: an I18n object for internationalization
	formAction: the action of the Form object for this Page. Optional
	function getForm()
	Description: get the form embedded in the page
	Returns: a Form object

	function getI18n()
	Description: get the I18n object used to internationalize this page
	Returns: an I18n object
	Also see: setI18n()

	function setOnLoad($js)
	Description: set JavaScript to be performed when the page loads

	Parameters
	js: a string of JavaScript code
	function getStylist()
	Description: get the stylist that stylize the page
	Returns: a Stylist object
	Also see: setStylist()

	function setStylist($stylist)
	Description: set the stylist that stylize the page
	Parameters
	stylist: a Stylist object
	Also see: getStylist()

	function getSubmitAction()
	Description: get the submit action that submits the form in this page
	Returns: a string

	function getSubmitTarget()
	Description: get the target of the embedded form to submit to
	Returns: a string
	Also see: setSubmitTarget()

	function setSubmitTarget($target)
	Description: set the target of the embedded form to submit to
	Returns: a string
	Also see: getSubmitTarget()

	function toHeaderHtml($style = "")
	Description: translate the header of the page into HTML representation
	Parameters
	style: a Style object that defines the style of the representation. Optional. If not supplied, de...
	Returns: HTML in string

	function toFooterHtml($style = "")
	Description: translate the footer of the page into HTML representation
	Parameters
	style: a Style object that defines the style of the representation. Optional. If not supplied, de...
	Returns: HTML in string

	PagedBlock
	PagedBlock represents a block that have multiple pages with each of them having their own form fi...
	Applicability
	Use this class to separate functionally cohesive, but context distant information. For example, u...

	Usage
	To use this class for just one page, create a PagedBlock object and add form fields without speci...
	The class PagedBlock extends HtmlComponent. PagedBlock implements page and toHTML().

	Public Methods
	function PagedBlock($page, $id, $label)
	Description: constructor

	Parameters
	page: the Page object this block is in
	id: an unique ID of the block in string
	label: a Label object for the block title
	function getButtons()
	Description: get all buttons added to the block
	Returns: an array of Button objects
	Also see: addButton()

	function addButton($button)
	Description: add a button to the list
	Parameters
	button: a Button object
	Also see: getButton()

	function getEndMark($pageId)
	Description: get the mark for marking the end of a HTML section specifically for a page. This is ...

	Parameters
	pageId: the ID of the page in string
	Returns: the mark in string
	Also see: getStartMark()
	function getFormFields()
	Description: get all the form fields of the block

	Parameters
	pageId: the ID of the page the form field is in. Optional if there is only one page.
	Returns: an array of FormField objects
	Also see: addFormField()
	function addFormField($formField, $label = "", $pageId = "")
	Description: add a form field to this block

	Parameters
	formField: a FormField object
	label: a label object. Optional. Hidden form fields are not shown and therefore do not need labels
	pageId: the ID of the page the form field is in; optional if there is only one page
	Returns: nothing
	Also see: getFormField()
	function getDividers()
	Description: get all dividers added to the block
	Returns: an array of Label objects
	Also see: addDivider()

	function addDivider($label = "", $pageId = "")
	Description: add a divider

	Parameter
	label: a label object. Optional.
	pageId: the ID of the page the form field is in; optional if there is only one page.
	function getFormFieldLabel($formField)
	Description: get the label for a form field

	Parameter
	formField: a FormField object
	Returns: a Label object
	Also see: getDividers()
	function getFormFieldPageId($formField)
	Description: get the page ID of a form field
	Parameter
	formField: a FormField object
	Returns: page ID in string

	function getLabel()
	Description: get the label of the block
	Returns: a Label object
	Also see: setLabel()

	function setLabel($label)
	Description: set the label of the block
	Parameter
	label: a Label object
	Also see: getLabel()

	function getId()
	Description: get the ID of the block

	Parameters
	Id: a string
	Returns: a string
	Also see: setId()
	function setId($id)
	Description: set the ID of the block

	Parameters
	Id: a string
	Returns: a string
	Also see: getId()
	function getPageIds()
	Description: get all the page IDs
	Returns: an array of IDs in string
	Also see: addPage()

	function getPageLabel($pageId)
	Description: get the label of a page

	Parameters
	pageId: the ID of the page
	Returns: a Label object
	function addPage($pageId, $label)
	Description: add a page into the paged block

	Parameters
	pageId: the ID of the page in string
	label: a Label object for the page
	function getSelectedId()
	Description: get the ID of the selected page
	Returns: a string
	Also see: setSelectedId()

	function setSelectedId($selectedId)
	Description: set the ID of the selected page

	Parameters
	selectedId: a ID string
	function getStartMark($pageId)
	Description: get the mark for marking the start of a HTML section specifically for a page

	Parameters
	pageId: the ID of the page in string
	Returns: the mark in string

	Password
	The class Password extends FormField.
	Public Methods
	Description: constructor
	function Password($page, $stylist, $id, $value, $invalidMessage, $emptyMessage = "")
	Parameters
	page: the Page object this form field lives in
	stylist: a Stylist object that defines the style
	id: the identifier of this object
	value: the default value
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function isConfirm()
	Description: see if the confirm field is shown
	Return: if true, a confirm field is shown
	Also see: setConfirm()

	function setConfirm($isConfirm)
	Description: set the configuration flag

	Parameter
	isConfirm: if true, a confirm field is shown
	Also see: isConfirm()

	RemoveButton
	The class RemoveButton extends Button.
	Public Methods
	function RemoveButton($page, $action)
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	SaveButton
	The class SaveButton extends Button.
	Public Methods
	function SaveButton($page, $action)
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	ScrollList
	The class ScrollList extends HtmlComponent. The class represents a list of similar elements to be...
	Applicability
	User this class when a list of similar elements needs to be represented. Do not use this class fo...

	Usage
	This class simply constructs a ScrollList object with a list of entry labels specified. You can a...
	NOTE: Remember to keep the number of elements of each entry the same as the number of entry labels.

	Public Methods
	function ScrollList($page, $id, $label, $entryLabels, $sortables = array())
	Description: constructor

	Parameters
	page: the Page object this object lives in
	id: the identifier in string
	label: a label object for the list
	entryLabels: an array Label object for the entries
	sortables: an array of indexes of the sortable components. Optional.
	function getAlignments()
	Description: get the horizontal alignments of items in entries
	Returns: an array of alignment strings.
	Also see: setAlignments().

	function setAlignments($alignments)
	Description: set the horizontal alignments of items in entries

	Parameters
	alignments: an array of alignment strings, for example, "", left, center, or right. "" and empty ...
	Also see: getAlignments()
	function getColumnWidths()
	Description: get the column widths for items in entries
	Returns: an array of widths
	Also see: setColumnWidths()

	function setColumnWidths($columnWidths)
	Description: set the widths of label and form field
	Returns: an array of widths in integer (pixel) or string (for example, "60%"). The first element ...
	Also see: getColumnWidths()

	Parameters
	widths: an array of widths in numbers (for example, 100), percentage strings (for example, 25%) ,...
	Also see: getColumnWidths()
	function addButton($button)
	Description: add a button to the list

	Parameters
	button: a Button object
	Also see: getButtons()
	function setSelectAll($selectAll = true)
	Description: when select all is on and entries can be selected, a widget is available on the list...
	Parameters
	selectAll: a boolean
	Also see: isSelectAll(), addEntry()

	function isSelectAll()
	Description: get the select all flag
	Returns: true if select all is enabled; false otherwise.
	Also see: addEntry()

	function setEmptyMessage($msg = "")
	Description: set the message to be displayed when the list is empty
	Parameters
	msg: an I18n tag of the form [[domain.messageId]] for interpolation

	function getDuplicateLimit()
	Description: get the upper limit of duplicate buttons at the end of the list
	Returns: an integer
	Also see: setDuplicateLimit()

	function setDuplicateLimit($duplicateLimit)
	Description: the upper limit of duplicate buttons at the end of the list

	Parameter
	duplicateLimit: the limit in integer
	Also see: getDuplicateLimit()
	function addEntry($entry, $entryId = "", $entrySelected = false, $entryIndex = -1)
	Description: add an entry to the list

	Parameters
	entry: an array of objects that consist the entry
	entryId: an unique ID for the entry. Optional. If supplied, the entry can be selected
	entrySelected: true if the entry is selected, false otherwise.Optional.
	entryNumber: the index of the entry on the list. Optional. If not supplied, the entry is appended...
	function getEntryNum()
	Description: get the number of entries in the list
	Returns: an integer
	Also see: setEntryNum(), addEntry()

	function setEntryNum($entryNum)
	Description: tell the list how many entries are there in the list. This is useful when you use ad...

	Parameters
	entryNum: an integer
	Also see: getEntryNum(), addEntry()
	function setEntryCountTags($singular, $plural)
	Description: set the i18n message tags used in entry count. Message tags have the format of [[<do...
	Parameters
	singular: a string message tag used when only one entry is listed
	plural: a string message tag used when many or zero are listed

	function getEntries()
	Description: get all the entries added to the list
	Returns: an array of entries. Each entry is an array of HtmlComponent objects
	Also see: addEntry()

	function getEntryLabels()
	Description: get the labels for each item of the entries
	Returns: an array of Label objects
	Also see: setEntryLabels()

	function setEntryLabels($entryLabels)
	Description: set the labels for each item of the entries

	Parameters
	entryLabels: an array of Label objects
	Also see: getEntryLabels()
	function getId() {
	Description: get the ID of the block
	Returns: an ID string
	Also see: setId()

	function setId($id)
	Description: set the ID of the block

	Parameters
	id: an ID string
	Also see: getId()
	function getLabel()
	Description: get the label of the block
	Returns: a Label object
	Also see: setLabel()

	function setLabel($label)
	Description: set the label of the block

	Parameters
	label: a Label object
	Also see: getLabel()
	function getLength()
	Description: get the maximum length of pages on the list.
	Returns: an integer
	Also see: setLength()

	function setLength($length)
	Description: set the maximum length of pages on the list. For example, if length is set to 10, an...

	Parameters
	length: an integer
	Also see: getLength()
	function getPageIndex()
	Description: get the index of the page the list is presenting
	Returns: an integer
	Also see: setPageIndex(), setLength()

	function setPageIndex($pageIndex)
	Description: set the index of the page the list is presenting

	Parameters
	pageIndex: an integer
	Also see: getPageIndex(), setLength()
	function isSortEnabled()
	Description: see if sorting is done by the list
	Returns: a boolean
	Also see: setSortEnabled()

	function setSortEnabled($sortEnabled)
	Description: enable or disable sorting done by the list. This method is useful if entries supplie...

	Parameters
	sortEnabled: a boolean
	Also see: getSortEnabled()
	function getSortables()
	Description: get the sortable components of the entries
	Returns: an array of indexes of the sortable components
	Also see: setSortables()

	function setSortables($sortables)
	Description: set the sortable components of the entries

	Parameters
	sortables: an array of indexes of the sortable components
	Also see: getSortables()
	function getSortedIndex()
	Description: get the index of the components that are sorted
	Returns: an integer
	Also see: setSortedIndex()

	function setSortedIndex($sortedIndex)
	Description: set the index of the components that are sorted. This method always overrides user s...

	Parameters
	sortedIndex: an integer. If -1, no sorting is done
	Also see: getSortedIndex()
	function setDefaultSortedIndex($sortedIndex)
	Description: set the index of the components that are sorted. If user has made selections, this m...

	Parameters
	sortedIndex: an integer. If -1, no sorting is done
	function getSortOrder()
	Description: get the order of sorting
	Returns: ascending or descending
	Also see: setSortOrder()

	function setSortOrder($sortOrder = "ascending")
	Description: set the order of sorting

	Parameters
	sortOrder: ascending or descending. Optional and ascending by default
	Also see: getSortOrder()
	function sortEntries(&$entries)
	Description: the method to sort the entries when displaying the list

	Parameters
	entries: the array of entries to sort
	function toHtml($style = "")
	Description: turn the object into HTML form

	Parameters
	style: the style to show in (optional)
	Returns: HTML that represents the object or "" if pageIndex is out of range

	SetSelector
	The class SetSelector extends FormField.
	Public methods
	function SetSelector($page, $id, $value, $entries, $emptyMessage)
	Description: constructor

	Parameters
	page: the Page object that this object lives in
	id: the identifier of the object
	value: an ampersand (&) separated list for the value set
	entries: an ampersand (&) separated list for the entry set
	emptyMessage: message to be shown upon empty input
	function getEntriesLabel()
	Description: get the label of the entry set
	Returns: a Label object
	Also see: setEntriesLabel()

	function setEntriesLabel($entriesLabel = "")
	Description: set the label of the entry set

	Parameters
	entriesLabel: a Label object
	Also see: getEntriesLabel()
	function getValueLabel()
	Description: get the label of the value set
	Returns: a Label object
	Also see: setValueLabel()

	function setValueLabel($valueLabel = "")
	Description: set the label of the value set
	Parameters
	valueLabel: a Label object
	Also see: getValueLabel()

	function getEntries()
	Description: get the entry set to choose from
	Returns: an ampersand-separated list for the entry set
	Also see: setEntries()

	function setEntries($entries)
	Description: set the entry set to choose from
	Parameters
	entries: an ampersand-separated list for the entry set

	SnmpCommunity
	The class SnmpCommunity extends FormField.
	Public methods
	function toHtml($style = "")

	StatusSignal
	The class StatusSignal extends HtmlComponent.
	Public Methods
	function StatusSignal($page, $status, $url = "")
	Description: constructor

	Parameters
	page: the Page object this object lives in
	status: none, normal, problem, severeProblem, new, disabled, noMonitor, replied, old, success, fa...
	url: the url to which to link (optional)
	function getCollatableValue()
	function getStatus()
	Description: get the status
	Returns: a string
	Also see: setStatus()

	function setStatus($status)
	Description: set the status

	Parameters
	status: a string. Possible values are noMonitor, disabled, none, normal, problem, severeProblem, ...
	Also see: getStatus()
	function setUrl($url)
	Description: set the URL to link to

	Parameters
	url: the url to which to link
	function setDescribed($described)
	Description: describe the signal to users if set to true

	Parameters
	described: true if described, false otherwise
	Also see: isDescribed()
	function isDescribed()
	Description: see if the signal is described to users
	Returns: true if described, false otherwise
	Also see: setDescribed()
	NOTE: For information on the Style class, see the Style appendix.

	Stylish
	The class Stylish gets the default style; subclasses should always override this style.
	Public Methods
	function getDefaultStyle($stylist)

	Parameters
	stylist: a Stylist object
	Returns: a Style object

	Stylist
	The class Stylist gets a list of all the style resources that are available.
	Public Methods
	function getAllResources($localePreference)
	Description: get a list of all the style resources available

	Parameters
	localePreference: a comma-separated list of preferred locale
	Returns: a hash of style resource id to name
	function setResource($styleResource, $locale)
	Description: set the style resource
	Parameters
	styleResource: an ID in string that identifies the style resource
	locale: a locale string for style localization

	function setStyle($style)
	Description: set a style object to the stylist

	function getStyle($styleId, $styleVariant = "")
	Description: get a style object with the specified id and variant. If no style of the id and vari...
	Parameters
	styleId: the identifier of the style in string
	styleVariant: the variant of the style in string
	Returns: a Style object with properties if the style can be found; empty Style object otherwise

	function _Stylist_getResourceId($file, $localePreference)
	Description: get the style resource ID from a file
	Parameters
	file: path of the file in string
	localePreference: a comma-separated list of preferred locale
	Returns: a style resource ID in string if succeed or false otherwise

	function _Stylist_load($styleResource, $locale)
	Description: loads in a style from styleDir defined in the configuration file

	Parameters
	styleResource: an identifier string
	Style <styleDir>/<styleResource>.xml is loaded

	locale: a locale string for style localization; it returns a hash containing all the style inform...
	function _Stylist_startElementHandler($parser, $name, $attributes)
	function _Stylist_resourceElementHandler($parser, $name, $attributes)
	function _Stylist_styleStartHandler($attributes)
	function _Stylist_propertyStartHandler($attributes)
	function _Stylist_parseXmlFile($file, $startElementHandler)

	TextBlock
	The class TextBlock extends FormField.
	Public Methods
	function TextBlock($page, $id, $value = "", $emptyMessage = "")
	Description: constructor

	Parameters
	page: the Page object that this object lives in
	id: the identifier of the object
	value: a text string. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function getHeight()
	Description: get the height or number of rows
	Returns: an integer
	Also see: setHeight()

	function setHeight($height)
	Description: set the height or number of rows
	Returns: an integer
	Also see: getHeight()

	function getWidth()
	Description: get the width or number of columns
	Returns: an integer
	Also see: getWidth()

	function setWidth($width)
	Description: set the width or number of columns
	Returns: an integer
	Also see: getWidth()

	function setWrap($val = false)
	Description: set to or not to wrap text

	Parameter
	val: true to wrap, false otherwise
	Also see: isWrap()
	function isWrap()
	Description: see if text should be wrapped or not
	Returns: true to wrap, false otherwise
	Also see: setWrap()

	TextField
	The class TextField extends FormField.
	Public Methods
	function TextField($page, $id, $value, $invalidMessage, $emptyMessage)
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the default value
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function setSize($size)
	Description: set the size or number of columns

	Parameters
	size: an integer
	function setMaxLength($len)
	Description: set the maximum length or characters the field can take

	Parameters
	len: an integer

	TextList
	The class TextList extends FormField.

	TimeStamp
	The class TimeStamp extends FormField.
	function TimeStamp($page, $id, $value)
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the number of seconds since Epoch
	function getFormat()
	Description: get the format of the time stamp

	Parameters
	format: can be date, time, or datetime
	Also see: getformat()
	function setFormat($format)
	Description: set the format of the time stamp

	Parameters
	format: can be date, time, or datetime
	Also see: getformat()

	TimeZone
	The class TimeZone extends FormField.
	Public Methods
	function TimeZone($page, $id, $value)
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object

	UninstallButton
	The class UninstallButton extends Button.
	Public Methods
	function UninstallButton($page, $action)
	Description: constructor

	Parameters
	page: the Page object this object lives in
	action: the string used within HREF attribute of the A tag

	Url
	The class Url extends FormField.
	Public Methods
	function Url($page, $id, $value, $label = "", $target = "", $invalidMessage = "", $emptyMessage =...
	Description: constructor

	Parameter
	page: the Page object this form field lives in
	id: the identifier of this object
	value: the URL
	label: a label in string. Optional
	target: the TARGET attribute of the A tag. Optional
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function getCollatableValue()
	function getLabel()
	Description: get the label
	Returns: a label in string
	Also see: setLabel()

	function setLabel($label)
	Description: set the label

	Parameters
	label: a label in string
	Also see: getLabel()
	function getTarget()
	Description: get the target
	Returns: the TARGET attribute of the A tag
	Also see: setTarget()

	function setTarget($target)
	Description: set the target

	Parameters
	target: the TARGET attribute of the A tag
	Also see: getTarget()

	UrlList
	The class UrlList extends FormField.
	Public Methods
	function UrlList($page, $id, $value, $labels = array(), $targets = array(), $invalidMessage, $emp...
	Description: constructor

	Parameters
	page: the Page object this form field lives in
	id: the identifier of this object
	value: an URL encoded list of URLs
	labels: an array of label strings. Optional
	targets: an array of target attributes for the A tag in strings. Optional
	invalidMessage: message to be shown upon invalid input. Optional
	emptyMessage: message to be shown upon empty input if the field is not optional. This message is ...
	function getLabels()
	Description: get the labels
	Returns: an array of label strings
	Also see: setLabels()

	function setLabels($labels)
	Description: set the labels

	Parameters
	labels: an array of label strings
	Also see: getLabels()
	function getTargets()
	Description: set the targets attributes

	Parameters
	labels: an array of label strings
	Also see: getTargets()
	function setTargets($targets)
	Description: set the labels

	Parameters
	labels: an array of label strings

	UserName
	The class UserName extends FormField.

	UserNameList
	The class UserNameList extends FormField.

	VerticalCompositeFormField
	The class VerticalCompositeFormField extends CompositeFormField.
	Appendix�B

	Utility Classes
	This appendix describes three utility classes:
	• ArrayPacker
	• Error
	• ServerScriptHelper

	These classes work in conjunction with the UIFC classes to help you create User Interface pages.
	ArrayPacker
	ArrayPacker provides a library of functions for packing and unpacking arrays or hashes to or from...
	Applicability
	This class can be used anywhere where arrays or hashes need to be get from or put into CCE.
	function arrayToString($array)
	Description: converts an array to a string

	Paramater
	array: an array of strings
	Returns: the packed array in string
	function stringToArray($string)
	Description: convert a string to an array

	Parameter
	string: a packed array in string
	Returns: an array of strings
	function isInArrayString($needle, $hayStack)
	Description: to see if a string is in an array

	Parameters
	needle: the string to find
	hayStack: a packed array in string
	Returns: true if string found, false otherwise
	function hashToString($array)
	Description: convert a hash (associative array) to a string, for example, ["foo"] = "bar", [1] = ...

	Parameters
	array: a hash
	Returns: a packed hash in string
	function stringToHash($string)
	Description: convert a string to a hash (associative array), for example, "&foo=bar&1=one&" => ["...

	Parameters
	string: a packed hash in string
	Returns: a hash

	Error
	This class represents an error.
	function Error($message, $vars = array())
	This method sets the error message with the message and vars parameters.
	Description: constructor

	Parameters
	message: an internationalizable string, that is, it can have [[domain.id]] tags.
	vars: a hash of variable names to values for localizing the string
	function getMessage()
	Description: get the error message
	Returns: an internationalizable string

	Parameters
	message: an internationalizable string, that is, it can have [[domain.id]] tags.
	vars: a hash of variable names to values for localizing the string
	See also: setMessage()

	Optional Methods
	function setMessage($message, $vars = array())
	Returns: none

	function getVars()
	Description: get the hash for string localization
	Returns: vars: a hash of variable names to values for localizing the message string. Optional
	See also: setMessage()

	function setVar($key, $val)
	Description: adding a variable to the string localization hash

	Parameters
	key: the key of the variable in string
	val: the value of the variable in string
	See also: getVars()

	ServerScriptHelper
	This class is designed to facilitate the development of server-side scripts. It is a library of c...
	Applicability
	This class is applicable to server-side scripts that use session, UIFC, I18n, and CCE.

	Usage
	This class construct a new ServerScriptHelper at the start of every server-side script. It automa...
	NOTE: Always call destructor() at the end of the scripts.

	Public Methods
	function ServerScriptHelper($sessionId = "", $loginName = "")
	Description: constructor

	Parameters
	sessionId: the session id in string. Optional. If not supplied, the global $sessionId is used
	loginName: the login name of the user in string. Optional. If not supplied, the global $loginName...
	function redirect()
	function destructor()
	Description: destructor

	function getFile($filename)
	Description: Returns the contents of a file using the Unix permissions granted to the current CCE...

	Parameters
	filename: The filename of the file to be opened
	Returns: the contents of the file
	function popen($cmd)
	Description: opens a read-only stream wrapped by CCE

	Parameters
	program: A string containing the program to execute, including the path and any arguments
	Returns: a file handle to be read from
	function shell($cmd, &$output)
	Description: allows one to execute a program as the currently logged in user
	Parameters
	program: A string containing program to execute, including path and any arguments output variable...
	Returns: 0 an success, error number on error

	function fork($cmd)
	Description: allows one to fork a program as the currently logged in user.
	NOTE: No interaction between the called program and the caller can be made.

	Parameters
	program: A string containing program to execute, including path and any arguments
	Returns: 0 an success, error number on error

	function getAccessRights()
	Descriptions: get an array of access rights
	Returns: an array of access rights in strings

	function getCceClient()
	Description: get a connected and authenticated CceClient
	Returns: a CceClient object

	function getHtmlComponentFactory($i18nDomain, $formAction = "")
	Description: get a HtmlComponentFactory object to construct HtmlComponents

	Parameters
	i18nDomain: the I18n domain used for construction
	formAction: the action of the form in which HtmlComponents reside
	Returns: a HtmlComponentFactory object
	function toErrorJavascript($errors)
	Description: represent errors in JavaScript

	Parameters
	errors: an array of error objects
	Returns: JavaScript if error occurred or "" otherwise
	function getI18n($domain = "", $httpAcceptLanguage = "")
	Description: get the right I18n object
	Parameters
	domain: the domain of the I18n object. Optional
	httpAcceptLanguage: the HTTP_ACCEPT_LANGUAGE header. Optional. If not supplied, global $HTTP_ACCE...
	Returns: an I18n object

	function getLocalePreference($httpAcceptLanguage = "")
	Description: gets the preferred locale specified by the logged -in user if browser is preferred, ...
	Parameters
	httpAcceptLanguage: the HTTP_ACCEPT_LANGUAGE header. Optional. Global HTTP_ACCEPT_LANGUAGE is use...
	Returns: a list of locales in string separated by commas.

	function getLoginName()
	Description: get the name of the logged-in user
	Returns: login name in string

	function getStylePreference()
	Description: gets the style preferred by the logged in user; if user has no preference or if the ...
	Returns: style ID in string

	function getStylist()
	Description: get the Stylist who gives right styles according to the style preference of the logg...
	Returns: a Stylist object

	function toHandlerHtml($returnUrl = "", $errors = array())
	Description: gets the HTML page to be printed out by UI page handlers

	Parameters
	returnUrl: the URL the handler returns to. Optional
	errors: an array of Error objects for errors occurred within the handler. Optional
	function getCListStyleJavascript()
	Description: get JavaScript to set style for collapsible list
	Returns: JavaScript in string

	function getFlowControlStyleJavascript()
	Description: get JavaScript to set style for flow navigation
	Returns: JavaScript in string

	function getInfoStyleJavascript()
	Description: get JavaScript to set style for info
	Returns: JavaScript in string

	getTabStyleJavascript()
	Description: get JavaScript to set style for tab
	Returns: JavaScript in string

	function getTitleStyleJavascript()
	Description: get JavaScript to set style for title
	Returns: JavaScript in string
	Appendix�C l

	About Style
	This Appendix provides a comprehensive description of the Style file. See “How Styles Work” on pa...
	Style Files
	Style files are XML files located under the directory described by styleDir in /usr/sausalito/ui/...
	An example of a style file is:
	<styleResource name="Good Looking">
	<style id="Block">
	<property name="backgroundColor" value="#FFFFFF"/>
	</style>
	<style id="Label">
	<property name="color" value="#FFFFFF"/>
	</style>
	</styleResource>

	Style files must be enclosed by a styleResource element. This element can have these attributes:
	name ::= internationalizable string

	name is the name of the style resource. The interpolate function of I18n module is used to intern...
	Within styleResource, there are style elements. Each style element describes one style. The attri...
	id ::= [a-zA-Z0-9_\-]+

	This is the identifier of the style.
	variant ::= [a-zA-Z0-9_\-]+
	NOTE: The variant attribute is optional. It acts as a secondary identifier of the style. Each sty...

	Within style elements, there are property elements. Each of these elements describes a property o...
	name ::= [a-zA-Z0-9_\-]+

	Each property is identified by a name.
	target ::= [a-zA-Z0-9_\-]+

	The target attribute is optional. It acts as a secondary identifier and specifies the target to w...
	value ::= string

	where string is the value of the property.

	Supported Styles
	Property Types
	Different properties have different value types. These are commonly used types for the properties:

	Boolean
	String "true" or "false".

	Color
	RGB format (for example, #RRGGBB) or names (for example, green).

	Positive integer
	Positive integers including 0.
	URL
	A URL.

	Common Properties
	These are properties used commonly in many different styles.
	backgroundColor
	Description: the background color of the page.
	NOTE: Do not be use with property backgroundImage.

	Value type
	Color

	backgroundImage
	Description: the background image of the page.
	NOTE: Do not be use with property backgroundColor.

	Value type
	URL

	borderThickness
	The pixel thickness of border.
	Value type
	Positive integer

	color
	The color of text.
	Value type
	Color

	fontFamily
	The family of the font that is used.
	Value type
	Same as CSS-1 font-family definition. Generic families are cursive,fantasy, monospace, sans-serif...

	fontSize
	The size of the font.
	Value type
	Same as CSS-1 font-size definition. For example, 12pt, large or 120%.

	fontStyle
	Description: the style of the font.
	Value type
	Same as CSS-1 font-style definition. For example, normal or italic.

	fontWeight
	Description: the fontWeight is the weight (boldness) of the font.
	Value type
	The Value type is the same as CSS-1 font-weight definition, for example, bold or 900.

	textDecoration
	Description: Decoration of text.
	Value type
	Same as CSS-1 text-decoration definition. For example, blink, line-through, none or underline.

	width
	Description: Pixel width.
	Value type
	Positive integer

	Styles
	Bar
	For UIFC. Bar class that represents a bar chart.
	Common properties
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	Unique properties
	none

	emptyImage
	Image for the empty portion of the bar.
	Value type
	URL

	Possible target(s)
	none

	endImage
	Image for the end portion of the bar.
	Value type
	URL

	Possible target(s)
	none

	filledImage
	Image for the filled portion of the bar.
	Value type
	URL

	Possible target(s)
	none

	startImage
	Image for the start portion of the bar.
	Value type
	URL

	Possible target(s)
	none

	Button
	Button is a class in the UIFC; see Appendix A for moreinformation. The Button class represents a ...
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	CancelButton
	CancelButton class that represent a button for the cancel action for the UIFC.
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	Label
	For UIFC. Label class represent a text label with description.
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	ModifyButton
	For UIFC. ModifyButton class that represent a button for the modify action.
	Unique properties
	modifyIcon
	Icon for the button.

	Value type
	URL

	Possible target(s)
	none

	MultiChoice
	For UIFC, MultiChoice class that represent a widget for selecting choices. It has choices: Label,...
	Common properties
	color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration

	Possible targets:
	choiceLabel, formFieldLabel, subscript

	Page
	For UIFC; Page class that represents a user interface page.
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	Unique properties
	center
	center defines if all the content of the page should be centered.

	Value type
	Boolean

	Possible target(s)
	none

	PagedBlock
	For UIFC. PagedBlock class that represents blocks that group form fields together. It has:
	dividerCell
	dividerLabel
	formFieldCell
	labelCell
	labelLabel
	subscript
	tabSelected
	tabUnselected
	titleCell
	titleLabel

	dividerCell represents the cells that act as dividers. dividerLabel represents labels in divider ...
	labelLabel represents labels in the form field label cells. subscript represents possible subscri...
	tabSelected represents the selected tab. tabUnselected represents tabs that are not selected. tit...
	titleLabel represents the label for the title.
	Common properties
	backgroundColor and backgroundImage (Possible targets: dividerCell, formFieldCell, labelCell, tab...
	color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration

	Possible targets:
	dividerLabel, labelLabel, subscript, tabSelected,
	tabUnselected, titleLabel) width

	Unique properties
	borderColor
	The color of the block border.

	Value type
	Color

	Possible target(s)
	none

	dividerHeight
	The pixel height of block dividers. If there is content within the divider and it is taller than ...
	Value type
	Positive integer

	Possible target(s)
	none

	icon
	The icon image to indicate if the tab is selected or not.
	Value type
	URL

	Possible target(s)
	tabSelected, tabUnselected

	Password
	For UIFC. Password class that represents a password. It has subscript. subscript represents subsc...
	Common properties
	color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration

	Possible targets
	subscript

	RemoveButton
	For UIFC. RemoveButton class that represent a button for the remove action.
	Unique properties
	none

	removeIcon
	Icon for the button.
	Value type
	URL

	Possible target(s)
	none

	SaveButton
	For UIFC. SaveButton class that represent a button for the save action.
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	SetSelector
	For UIFC. SetSelector class that represent a widget to select a subset out of a full set.
	Unique properties!
	addIcon
	The icon for the add button to add entries to the set.

	Value type
	URL

	Possible target(s)
	none

	addIconGray
	The icon for the add button to add entries to the set in grayed out state.
	Value type
	URL

	Possible target(s)
	none

	removeIcon
	The icon for the remove button to add entries to the set.
	Value type
	URL

	Possible target(s)
	none

	removeIconGray
	The icon for the remove button to add entries to the set in grayed out state.
	Value type
	URL

	Possible target(s)
	none

	ScrollList
	For UIFC. ScrollList class that represents a scrollable list. It has:
	entryCell
	labelCell
	labelLabel
	titleCell
	titleLabel

	entryCell represents cells in which entries reside. labelCell represents cells in which labels re...
	Common properties
	backgroundColor and backgroundImage

	Possible targets:
	entryCell, labelCell, titleCell)

	borderThickness
	color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration
	Possible targets:
	entryCell, labelLabel, titleLabel

	Unique properties
	none

	borderColor
	The color of the scroll list border.
	Value type
	URL

	Possible target(s)
	none

	sortAscendingIcon
	The icon for the button to sort entries in ascending order. Used in unsorted columns.
	Value type
	URL

	Possible target(s)
	none

	sortDescendingIcon
	The icon for the button to sort entries in descending order used in unsorted columns.
	Value type
	URL

	Possible target(s)
	none

	sortedAscendingIcon
	The icon for the button to sort entries in ascending order, used in the sorted column.
	Value type
	URL

	Possible target(s)
	none

	sortedDescendingIcon
	The icon for the button to sort entries in descending order, used in the sorted column.
	Value type
	URL
	Possible target(s)
	none

	StatusSignal
	For UIFC. StatusSignal class that represents a status signal.
	Unique properties
	none

	failureIcon
	The icon the indicate a failure state.
	Value type
	URL

	Possible target(s)
	none

	newIcon
	The icon the indicate a new state.
	Value type
	URL

	Possible target(s)
	none

	noneIcon
	The icon the indicate a none state.
	Value type
	URL

	Possible target(s)
	none

	normalIcon
	The icon the indicate a normal state.
	Value type
	URL

	Possible target(s)
	none

	oldIcon
	The icon the indicate an old state.
	Value type
	URL

	Possible target(s)
	none

	problemIcon
	The icon the indicate a problem state.
	Value type
	URL

	Possible target(s)
	none

	repliedIcon
	The icon the indicate a replied state.
	Value type
	URL

	Possible target(s)
	none

	severeProblemIcon
	The icon the indicate a severe problem state.
	Value type
	URL

	Possible target(s)
	none

	successIcon
	The icon the indicate a success state.
	Value type
	URL

	Possible target(s)
	none

	cListNavigation
	For the collapsible list navigation system.
	Unique properties
	collapsibleListWidth
	The pixel width of the collapsible list widget.

	Value type
	Positive Integer

	Possible target(s)
	none

	infoHeight
	The pixel height of the information widget.
	Value type
	Positive Integer

	Possible target(s)
	none

	tabHeight
	The pixel height of the tab widget.
	Value type
	Positive Integer

	Possible target(s)
	none

	collapsibleList
	For the collapsible list widget in the collapsible list navigation system.
	Common properties
	backgroundColor and backgroundImage

	Possible targets:
	list, page

	borderThickness
	color, fontFamily, fontSize, fontStyle, fontWeight and textDecoration
	Possible targets:
	selected, unselected width

	Unique properties
	none

	collapsed Icon
	The icon to indicate an item with children is collapsed.
	Value type
	URL

	Possible target(s)
	none

	expandedIcon
	The icon to indicate an item with children is expanded.
	Value type
	URL

	Possible target(s)
	none

	selectedIcon
	The icon to indicate an item without children is selected.
	Value type
	URL

	Possible target(s)
	none

	unselectedIcon
	The icon to indicate an item without children is unselected.
	Value type
	URL

	Possible target(s)
	none

	info
	For the information widget used in several navigation systems.
	Common properties
	backgroundColor and backgroundImage

	Possible targets
	error
	help
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	Possible targets:
	error, help

	Unique properties
	none

	downIcon
	The icon for the button for going down.
	Value type
	URL

	Possible target(s)
	error, help

	downIconGray
	The icon for the button for going down in grayed out state.
	Value type
	URL

	Possible target(s)
	error, help

	typeIcon
	The icon to indicate the type of the information.
	Value type
	URL

	Possible target(s)
	error, help

	upIcon
	The icon for the button for going up.
	Value type
	URL

	Possible target(s)
	error, help

	upIconGray
	The icon for the button for going up in grayed out state.
	Value type
	URL

	Possible target(s)
	error, help

	tab
	The tab widget is in the collapsible list navigation system.
	Common properties
	backgroundColor
	backgroundImage
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration

	Possible targets:
	selected, unselected)
	Unique properties
	logo
	The logo to be shown next to the tabs.

	Value type
	URL

	Possible target(s)
	none

	selectedImageLeft
	The image put on the left of the selected tab item.
	Value type
	URL

	Possible target(s)
	none

	selectedImageRight
	The image put on the right of the selected tab item.
	Value type
	URL

	Possible target(s)
	none

	unselectedImageLeft
	The image put on the left of unselected tab items.
	Value type
	URL

	Possible target(s)
	none

	unselectedImageRight
	The image put on the right of unselected tab items.
	Value type
	URL

	Possible target(s)
	none
	Appendix�D

	Base Data Types
	This section contains base data type definitions for the Sausalito architecture.
	CAUTION! Do not reuse or redefine the base types listed above. If you modify the definitions of t...

	Scalar
	Scalar is any data.
	<typedef name="scalar" type="re" data="^.*$"/>

	Word
	Word is any non-whitespace data.
	<typedef name="word" type="re" data="^[^
	\t\n\r\v\f]+$"/>

	Alphanum
	Alphanum is any alphanumeric data.
	<typedef name="alphanum" type="re" data="^[A-Za-z0- 9]+$"/>

	Alphanum_plus
	An alphanum_plus is alphanumeric data plus an approved subset of punctuation.
	<typedef
	name="alphanum_plus"
	type="re"
	data="^[A-Za-z0-9._-]+$"
	/>

	Int
	A Int is a signed integer.
	<typedef name="int" type="re"
	data="^(\-?[1-9][0-9]*)|(0)$"/>

	Uint
	A Uint is an unsigned integer.
	<typedef name="uint" type="re"
	data="^([1-9][0-9]*)|(0)$"/>

	Boolean
	A Boolean is empty or 0 for FALSE; any data for TRUE.
	<typedef name="boolean" type="re" data=".*"/>

	Ipaddr
	<typedef name="ipaddr" type="re"
	data="^(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\ .(([0-9])|([1-9][0-9])|(1[0-9][0...
	/>

	Network
	A network defines a network number, such as 10.9.0.0/16.
	<typedef name="network" type="re"
	data="^(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\ .(([0-9])|([1-9][0-9])|(1[0-9][0...
	/>

	Email Address
	The email_address is the address of the email user, for example, fred@cobalt.com.
	<typedef
	name="email_address"
	type="re"
	data="^[a-zA-Z\-_\d\.]+\@[a-zA-Z\-_\d\.]+$"
	/>

	Netmask
	A netmask can be either a number from 1 to 32 or a dot-quaded IP mask.
	<typedef name="netmask" type="re"
	data="^(([1-9])|([12][0-9])|(3[0- 2])|((0|128|192|224|240|248|252|254|255)\.0\.0\.0)|255\ .((0|12...
	/>

	Fqdn
	An fqdn is the fully qualified domain name, for example, www.cobalt.com
	<typedef name="fqdn" type="re"
	data="^([A-Za-z0-9][A-Za-z0-9\-]*\.)+[A-Za-z]{2,3}$"
	/>

	Hostname
	A hostname is defined as follows:
	<typedef name="hostname" type="re"
	data="^[A-Za-z0-9][A-Za-z0-9\-]*(\.[A-Za-z0-9][A-Za-z0-9\-]*)*$"
	/>

	Domainname
	A domainname is defined as follows:
	<typedef name="domainname" type="re"
	data="^(localdomain)|(([A-Za-z0-9][A-Za-z0-9\-]*\.)+[A-Za- z]{2,3})$"
	/>
	<typedef
	name="password"
	type="re"
	data="^[^\001-\037\177]{3,16}$"
	/>

	Appendix�E

	Cobalt System Configuration Protocol
	This appendix describes the details of the Cobalt System Configuration Protocol (CSCP). For an ov...
	When a CSCP session begins, the server starts the connection by transmitting a CSCP header to the...
	Header ::= Identifier-Line ObjectID-Line? Ready-Line
	Identifier-Line ::= "100 CSCP/" version nl
	ObjectID-Line ::= "101 EVENT " object-id "." (namespace ".")? property
	Ready-Line ::= "200 Ready" nl

	A handler is triggered because of some change in an object. The ObjectID-Line tells you the name ...
	NOTE: ObjectID-Line and Attribute-Line are only meaningful in the context of CCED communicating w...

	Example Headers
	When CCE connects to a client or a handler, the header is sent.This is an example header that a U...
	100 CSCP/1.0
	200 Ready

	These are example headers that an event handler would expect to see when CCED connects to the han...
	100 CSCP/1.0
	101 Event 5._CREATE
	200 OK
	100 CSCP/1.0
	101 Event 27.Foo.enable
	200 OK
	100 CSCP/1.0
	101 Event 93..enable
	200 OK

	Messages
	This section explains patterns repeatedly occur in CSCP. All lines sent by the server consist of ...
	100-199 = Informational
	200-299 = Success
	300-399 = Warning
	400-499 = Failure
	900-999 = System issued message (can be sent at any time)

	A response is made up of any number of 100 or 300 lines, finishing with a single 200 or 400 line....
	The lowest 30 codes of each 100 and 300 block and the lowest 10 codes of each 200 and 400 block i...
	The following is a more detailed breakdown of allocations:
	"100 CSCP/" version
	"101 EVENT oid.event"
	"102 DATA " key " = " val
	"103 DATA " key " = " val (uncommitted)
	"104 OBJECT " oid
	"105 NAMESPACE " namespace
	"106 INFO " msg
	"107 CREATED"
	"108 DESTROYED"
	"109 SESSIONID " session-id-string
	"110 CLASS " classname
	111-119 : reserved
	120-129 : reserved for protocol headers
	130-199 : allocated for commands
	"200 READY"
	"201 OK"
	"202 GOODBYE"
	203-209 : reserved
	210-299 : allocated for commands
	"300 UNKNOWN OBJECT " oid
	"301 UNKNOWN CLASS " class
	"302 BAD DATA " oid " " key " " value
	"303 UNKNOWN NAMESPACE " namespace
	"304 PERMISSION DENIED" reason
	"305 WARN " msg
	"306 ERROR " msg
	"307 OUT OF MEMORY"
	308-329 : reserved
	330-399 : allocated for commands
	"400 NOT READY"
	"401 FAIL"
	"402 BAD COMMAND"
	"403 BAD PARAMETERS"
	404-410 : reserved
	420-499 : allocated for commands
	"998 SHUTTING DOWN"
	"999 ENGINE ON FIRE"

	CSCP Command Summary
	This is the total set of CSCP commands:
	Table�6–4 CSCP commands

	These additional commands are available in handler mode, that is, when the CCED is communicating ...
	Table�6–5 Additional CSCPcommands for handler mode

	See Chapter 5 for the Perl, C, and PHP libraries of CSCP commands.
	Common Syntax Definitions
	Syntax for commands is described in lazy-BNF notation, that is, it is similar to BNF, but is huma...
	sp ::= [\t]+ (any number of whitespace characters)
	nl ::= '\n'
	CLASSNAME ::= "SITE" | "USER" | "GROUP" | "MAILLIST"
	alphanumeric_string ::= [A-Za-z0-9_]+
	quoted_string ::= "\"" [^\"]* "\""
	stringvalue ::= quoted_string | alphanumeric_string
	KEY ::= stringvalue
	VALUE ::= stringvalue
	OID ::= stringvalue

	CSCP Commands
	The AUTH Command
	The auth command authenticates the client to have the permissions of the specified user. To re-AU...
	Syntax:
	"AUTH" sp USERNAME sp PASSWORD nl

	USERNAME is the user's username.
	PASSWORD is the user's password (unencrypted).
	Return values: 109, 201, 401

	The AUTHKEY Command
	The authkey commands authenticates to an existing session, assuming that sessions's id and privil...
	Syntax:
	"AUTHKEY" sp USERNAME sp SESSION-KEY nl

	SESSION-KEY is an alphanumeric string that uniquely identifies a session-user pair.
	Return values: 109, 201, 401

	The ENDKEY Command
	The endkey command alerts the server to immediately expire the current sessionid, and not allow i...
	Syntax:
	"ENDKEY" nl

	Return values: 201

	The CREATE Command
	The create command takes a class name and a list of attributes, and creates a new object of that ...
	Syntax:
	"CREATE" sp CLASSNAME (sp KEY sp "=" sp VALUE)* nl

	Informational responses:104
	Warning responses: 301, 302, 303, 304
	Return values: 201, 401

	The DESTROY Command
	The destroy command takes an oid and destroys the object.
	Syntax:
	"DESTROY" sp oid

	Informational responses: 300, 304
	Return values: 201, 401

	The SET Command
	The set command modifies the attributes of an existing object.
	Syntax:
	"SET" sp OID ("." NAMESPACE)? (sp KEY sp? "=" sp? VALUE)* nl

	Warning responses:300, 302, 303, 304
	Return values: 201, 401

	The GET Command
	The get command returns all of the current attributes for the specified object. In the face of tr...
	Syntax:
	"GET" sp OID ("." NAMESPACE)? nl

	Informational responses:102, 103, 107, 108
	Warning responses: 300, 303
	Return values:201, 401

	The COMMIT Command
	The commit command triggers any deferred activity.
	Syntax:
	"COMMIT" nl
	Informational responses: 106
	Warning responses:305
	Return values: 201, 401

	The NAMES Command
	The names command returns a list of all defined namespaces for a class.
	Syntax:
	"NAMES" sp (OID|CLASSNAME) nl

	Informational responses: 105
	Warning responses: 300, 301
	Return values: 201, 401

	The CLASSES Command
	The CLASSES command returns a list of all defined classes.
	Syntax:
	"CLASSES" nl
	Informational responses: 110
	Return values: 201

	The FIND Command
	The find command searches through object space to find all object of a given class that match a c...
	Syntax:
	"FIND" sp CLASSNAME (sp ("SORT"|"SORTNUM") sp SORTKEY)?
	(sp KEY sp? "=" sp? VALUE)* nl
	Find searches within the set of objects that belong to class CLASSNAME. Find finds all of the obj...
	If the SORT option is specified, the objects are returned in order, sorted alphanumeric ally from...
	If the SORTNUM option is specified, the objects are returned in order as with the SORT option, ex...
	SORTNUM is capable of handling the sorting of integers (“11”), floating point numbers (“12.54”), ...
	Informational responses: 104
	Warning responses:301
	Return values: 201, 401

	The WHOAMI Command
	Syntax:
	"WHOAMI" nl
	If the session is currently authenticated, whoami returns the OID of the user object that the con...
	Informational responses: 104
	Return values: 201

	The BYE Command
	The Bye-Condition field is optional, and is ignored unless CCEd is talking to an event handler, t...
	In a handler context, if the "Bye-Condition" is omitted (or if the handler exits without issuing ...
	Syntax:
	"BYE" Bye-Condition? nl
	Bye-Condition ::= (Bye-Success | Bye-Failure | Bye-Defer)
	Bye-Success ::= "SUCCESS"
	Bye-Failure ::= "FAIL"
	Bye-Defer ::= "DEFER"

	Return values: 202

	CSCP Handler Extensions
	The BADDATA Command
	The BADDATA command is used by a handler to report that one of the attributes or data in the curr...
	Reporting bad data is left to the discretion of the handler. Handlers can choose to not flag BADD...
	Syntax:
	"BADDATA" sp OID sp KEY sp VALUE nl

	Return value: 201

	The INFO Command
	The INFO command is used by a handler to report some piece of info for use by the front-end. The ...
	Syntax:
	"INFO" sp MESSAGE nl

	MESSAGE ::= domain ":" tag (<sp>+ var1name <sp>* "=" <sp>* var1val)*
	Variable names must follow all the same guidelines as a property name, and variable values must b...
	Return value: 201

	The WARN Command
	The WARN command is used by a handler to report some piece of information for use by the front-en...
	Syntax:
	"WARN" sp MESSAGE nl

	Return value: 201

	Built-in Properties of Objects
	Using the get command, a hash is returned from the Object Database (ODB). In addition to ordinary...
	OID The unique identifier number for the object
	CLASS The class of the object
	NAMESPACE The namespace of the the subset of properties retrieved
	Appendix�F

	CCE Class Definitions
	NOTE: In a later draft, properties will be labeled optional and required.
	CAUTION! The class definition properties are subject to change. Check this section for updates.
	Programming Conventions
	The class definitions use the following conventions:
	• All class names have the first character capitalized. for example, System. If they have more th...
	• Namespace names follow the same rule as class names.
	• All property names start with an all lowercase first word. If a property name has more than one...

	CCE Class Definitions
	System
	System stores all system-wide configuration settings. There should be exactly one System object i...
	Table�C–1 Network

	Network
	Network stores settings relevant to the basic (non-virtual) TCP/IP network interfaces.
	Table�C–2 Network

	Route
	route used to add additional gateways for some routes.
	Table�C–3 route

	Workgroup
	workgroup stores all workgroup-specific settings.
	Table�C–4 workgroup

	Workgroup Defaults
	workgroup defaults stores workgroup defaults
	Table�C–5 workgroup defaults

	User
	User stores all user-specific settings.
	Table�C–6

	UserDefaults
	UserDefaults stores user defaults.
	Table�C–7 User Defaults

	MailList
	MailList represents a mailing list.
	Table�C–8 MailList

	User.Email
	User.Email determines email-specific properties
	Table�C–9

	System.Email
	System.Email lists System specific email properties
	Table�C–10

	System.FTP
	System.FTP determines FTP settings.
	Table�C–11

	System.Snmp
	SNMP settings are settings for Simple Network Mail Protocol.
	Table�C–12 SNMP

	DhcpParam
	DhcpParam are parameters for DHCP clients.
	Table�C–13 DhcpParam

	DhcpStatic
	DhcpStatic configures static address assignments.
	Table�C–14 DhcpStatic

	DhcpDynamic
	DhcpDynamic provides configuration for dynamic address range assignments
	Table�C–15 DhcpDynamic

